Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF PARAMETERS OF THE CALIBRATION PROCESS ON BENDING STIFFNESS OF STEEL ROD. PART 1. DETERMINATION OF RESIDUAL STRESSES IN THE CALIBRATED ROD

https://doi.org/10.17073/0368-0797-2017-11-870-876

Abstract

Calibrated metal is presented as an effective form of blanks for a number of metal technologies. Greater its use in industry is prevented by residual stresses formed during cold deformation. So, the main problem at manufacture from the calibrated metal of low-rigid details like shaft, is existence in material of the considerable level and a nonuniform distribution of residual stresses, the appearance of which is large due to technological reasons. The main components of the tensor of residual stresses in a calibrated rod were determined by the method of grinding and boring of one cylinder. The planning methodology of multivariate experiments was used to determine the effect of the main parameters of calibration process on residual stress state, on the basis of which the main parameters of the calibration process that affect the formation of technological residual stresses are revealed. Influence of extent of the relative cobbing, corner of a working cone and length of the calibrating zone of the working tool on the size and the nature of distribution of axial, tangential and radial residual stresses were determined. It was established, for example, that the stretching tangential stresses have the largest value at degree of the relative cobbing of 23  %, working angle of drawing die of 18° and calibration speeds of 2.5  mm/sec under the worst conditions of lubricant. The ambiguous dependence of components of residual stresses on process parameters should be noted. So, at the increase in extent of the relative cobbing, the tangential residual stresses increase and axial ones decrease. With increase in cobbing from 5 to 34  % tangential residual stresses increase by 2.5  times, and axial ones decrease by 13  %. It was established also that on axial tension the greater influence is exerted by an angle of working drawing die, and on tangential – extent of the relative cogging. In the range of angles of working drawing die from 80 to 240  character of residual stresses on the section of a bar does not change. With increase in length of the calibrating zone of the drawing die the values of components of residual stresses tensor significantly decrease. Increase in length of the calibrating zone is an effective remedy for decrease in residual stresses in the calibrated bars. Depth of distribution of compressive residual stresses is not a stationary value and depends on the calibration modes.

About the Authors

S. A. Zaides
Irkutsk National Research Technical University
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Chair “Engineering Technology and Materials”,

Irkutsk



Van Khuan Nguen
Irkutsk National Research Technical University
Russian Federation

Postgraduate,

Irkutsk



References

1. Sheftel’N.I. Uluchshenie kachestva i sortamenta prokata [Improvement of quality and assortment of rolled products]. Moscow: Metallurgiya, 1973, 343 p. (In Russ.).

2. Zaides S.A. Ostatochnye napryazheniya i kachestvo kalibrovannogo metalla [Residual stresses and quality of the calibrated metal]. Irkutsk: IrGTU, 1992, 200 p. (In Russ.).

3. Zaides S.A. Okhvatyvayushchee poverkhnostnoe plasticheskoe deformirovanie [Covering surface plastic deformation]. Irkutsk: IrGTU, 2001, 309 p. (In Russ.).

4. Sokolov I.A., Ural’skii V.I. Ostatochnye napryazheniya i kachestvo metalloproduktsii [Residual stresses and quality of metal products]. Moscow: Metallurgiya, 1981, 97 p. (In Russ.).

5. Pozdeev A.A., Nyashin Yu.I., Trusov P.V. Ostatochnye napryazheniya. Teoriya i prilozheniya [Residual stresses. Theory and applications]. Moscow: Nauka, 1982, 111 p. (In Russ.).

6. Vishnyakov Ya.D., Piskarev V.D. Upravlenie ostatochnymi napryazheniyami v metallakh i splavakh [Management of residual stresses in metals and alloys]. Moscow: Metallurgiya, 1989, 253 p. (In Russ.).

7. Skorokhodov A.N., Zudov E.G., Kirichkov A.A, Petrenko Yu.P. Ostatochnye napryazheniya v profilyakh i sposoby ikh snizheniya [Residual stresses in profiles and the ways of their decrease]. Moscow: Metalurgiya, 1985, 185 p. (In Russ.).

8. Alekseev P.G. Stability of residual stresses and their influence on wear resistance of hardened parts. In: Povyshenie ekspluatatsionnykh svoistv detalei poverkhnostnym plasticheskim deformirovaniem [Increase of operational properties of parts by surface plastic deformation]. Moscow: MDNTP, 1971, pp. 76–79. (In Russ.).

9. Radchenko V.P., Saushkin M.N. Polzuchest’ i relaksatsiya ostatochnykh napryazhenii v uprochnennykh konstruktsiyakh [Creep and relaxation of residual stresses in hardened structures]. Moscow: Mashinostroenie–1, 2005, 226 p. (In Russ.).

10. Struzhanov V.V. On residual stresses after rolling and stratification of double-layer strips. Vestnik SamGTU. Seriya fiz-mat nauki. 2010, no. 5, pp. 55–63. (In Russ.).

11. Mrochek Zh.A., Makarevich S.S., Kozhuro L.M. etc. Ostatochnye napryazheniya [Residual stresses]. Makarevich S.S. ed. Minsk: UP “Tekhnoprint”, 2003, 316 p. (In Russ.).

12. Podzei A.V., Sulima A.M., Evstigneev M.I. Tekhnologicheskie ostatochnye napryazheniya [Technological residual stresses]. Podzei  A.V. ed. Moscow: Mashinostroenie, 1973, 216 p. (In Russ.).

13. Birger I.A. Ostatochnye napryazheniya [Residual stresses]. Moscow: Mashgiz. 1963, 232 p. (In Russ.).

14. Trykov Yu.P., Pokataev E.P., Shmorgun V.G., Khrapov A.A. Ostatochnye napryazheniya v sloistykh kompozitakh [Residual stresses in layered composites]. Moscow: Metallurgizdat, 2010, 237 p. (In Russ.).

15. Nedorezov I.V., Polyakov A.P., Volegov etc. Methods for determining residual stresses in no-tempered rails. Proizvodstvo prokata. 2001, no. 2, pp. 11–16. (In Russ.).

16. Belousov Yu.V. Calculation of residual stresses during etching of the fixed sample. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2017, no. 1, pp. 78–80. (In Russ.).

17. Karatushin S.I., Khramova D.A., Bil’dyuk N.A. Modeling and calculation of residual stresses in rolling profiles. Izv. vuz. Mashinostroenie. 2017, no. 6(582), pp. 28–34. (In Russ.).

18. Blyumenshtein V.Yu., Makhalov M.S. Influence of the modes on formation of residual stresses in the surface layer at dimensional combined rolling. Obrabotka metallov. 2008, no. 2 (39), pp. 15–22. (In Russ.).

19. Makhalov M.S. Calculated model of formation of residual stresses of the surface layer at dimensional combined rolling. Obrabotka metallov. 2008, no. 4, pp. 17–18. (In Russ.).

20. Radchenko V.P., Morozov A.P., Saushkin M.N. Stochastic model for calculating residual stresses in a surface-hardened hollow cylinder under creep conditions. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika. 2017, no. 1, pp. 181–207. (In Russ.).

21. Rusakov A.A. Rentgenografiya metallov [Radiography of metals] Moscow: Atomizdat, 1977, 237 p. (In Russ.).

22. Rebrova I.A. Teoriya planirovaniya eksperimenta [Theory of experiment planning]. Omsk: SibADI, 2016, 106 p. (In Russ.).

23. Hartmann K., Lezki E., Schäfer W. Statistische Versuchsplanung und Auswertung in der Stoffwirtschaft. Klaus Hartmann (Hrsg.). Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1974. (Russ.ed.: Hartmann K. etc. Planirovanie eksperimentov v issledovanii tekhnologicheskikh protsessov. Moscow: Mir, 1977, 552 p.).

24. Berin I.Sh., Dnestrovskii N.Z. Volochil’nyi instrument [Drawing tool]. Moscow: 1971, 174 p. (In Russ.).

25. Domrachev A.F., Zaides S.A., Kvaktun V.B. etc. Development of increase in speeds of drawing of an aluminum wire. Kabel’naya tekhnika. 1977, no. 8, pp. 10–12. (In Russ.).

26. Druzhinina T.Ya., Zaides S.A., Arkulis G.E. etc. Residual stresses in the calibrated metal and methods of their regulation. In: Ostatochnye napryazheniya i metody regulirovaniya: Tr. Vsesoyuz. simpoz. po ostatochnym napryazheniyam [Residual stresses and control methods: Papers of All-Union Symp. on Residual Stresses]. Moscow: 1982, pp. 175–180. (In Russ.).


Review

For citations:


Zaides S.A., Nguen V. INFLUENCE OF PARAMETERS OF THE CALIBRATION PROCESS ON BENDING STIFFNESS OF STEEL ROD. PART 1. DETERMINATION OF RESIDUAL STRESSES IN THE CALIBRATED ROD. Izvestiya. Ferrous Metallurgy. 2017;60(11):870-876. (In Russ.) https://doi.org/10.17073/0368-0797-2017-11-870-876

Views: 662


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)