Preview

Izvestiya. Ferrous Metallurgy

Advanced search

STUDY OF THE VISCOSITY OF SLAGS OF СаО–SiO2 –В2 О3 – 25 % Al2 O3 – 8 % MgO SYSTEM

https://doi.org/10.17073/0368-0797-2017-10-820-825

Abstract

The effect of the B2O3 content and the slag basicity on the viscosity of the CaO – SiO2 – B2O3 system containing 25  %  Al2O3 and 8  % MgO2 was studied using a simplex-lattice method of experiment planning that allows obtaining mathematical models describing the dependence of the property on the composition as a continuous function. Synthetic slags, corresponding to the composition of simplex under study, were smelted in graphite crucibles from pre-calcined oxides. The composition of slags, corresponding to the remaining points of the local simplex plan, was obtained by counter-packing the slags of simplexes. The viscosity of the slag was measured in molybdenum crucibles by means of an electrovibrational viscometer in an argon flow with continuous cooling of the melt from a homogeneous-liquid to a solid state. Mathematical models were constructed that describe the relationship between the temperature of a given viscosity and the composition of the oxide system using experimental data. Then, a set of viscosity isolines was obtained by combining the obtained composition-temperature diagrams of the given viscosity with the isothermal section of the composition-viscosity diagram. The generalization of mathematical modeling results and graphical imaging on the isothermal profile of the composition-viscosity diagram made it possible to obtain new data on the viscosity of the CaO – SiO2 – B2O3 oxide system containing 25  %  Al2O3 and 8  %  MgO in the basic 2  –  5 range and 1  –  10  % B2O3 content. The slags of the oxide system under study in the temperature range of 1400  –  1500  °C are characterized by low viscosity. At a temperature of 1400  °С, the viscosity of slag with basicity 2.0  –  2.5, containing 7  –  10  % B2O3 does not exceed 3  –  4  Ps. The displacement of the slag into the basicity of 3  –  5 is accompanied by a decrease in B2O3 content to 2  –  6  % by increasing the slag viscosity to 12  Ps. An increase in temperature to 1450  °C leads to a significant decrease in the viscosity of slags with basicity of 2  –  3, even for slag with B2O3 content of 4  %, it does not exceed 4  Ps and increases to 6  Ps in the basicity of 3  –  5 and B2O3 content of 1  –  3  %. The slag viscosity in the basicity of 3  –  5 at B2O3 content of 1  –  4  % does not exceed 4  Ps at a temperature of 1500  °С.

About the Authors

A. A. Babenko
Institute of Metallurgy UB RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Pyrometallurgy of Nonferrous Metals,

Ekaterinburg



V. I. Zhuchkov
Institute of Metallurgy UB RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Dr. Sci. (Eng.), Chief Researcher,

Ekaterinburg



A. G. Upolovnikova
Institute of Metallurgy UB RAS
Russian Federation

Cand. Sci. (Eng.), Senior Researcher,

Ekaterinburg



I. N. Kel’
Institute of Metallurgy UB RAS
Russian Federation

Junior Researcher,

Ekaterinburg



References

1. Chumakov S.M., Lamukhin A.M., Zinchenko S.D. Concept of production oflow-sulfursteels at OAO Severstal, taking into account the technological aspects. In: Trudy VI kongressa staleplavil’shchikov [Proceedings of the Sixth Congress of Steelmakers]. Moscow: AO “Chermetinformatsiya”, 2001, pp. 63–66. (In Russ.).

2. Popel’ S.I. Teoriya metallurgicheskikh protsessov [Theory of metallurgical processes]. Moscow: Metallurgiya, 1986, 463 p. (In Russ.).

3. Sokolov G.A. Vnepechnoe rafinirovaniye stali [Out-of-furnace refining of steel]. Moscow: Metallurgiya, 1977, 208 p. (In Russ.).

4. Hongming W., Tingwang Z., Hua Z. Effect of B2 O3 on melting temperature, viscosity and desulfurization capacity of CaO – based refining flux. ISIJ International. 2011, vol. 51, no. 5, рр. 702–708.

5. Dyudkin D.A., Kisilenko V.V. Proizvodstvo stali. Tom 1. Protsessy vyplavki, vnepechnoi obrabotki i nepreryvnoi razlivki [Production of steel. Vol. 1. Processes of smelting, out-of-furnace processing and continuous casting]. Moscow: Teplotekhnik, 2008, 528 p. (In Russ.).

6. Kurpas V.I., Krupman L.I., Brodskii S.S. Improved technology of out-of-furnace refining of steel. Stal’. 1986, no. 2, pp.56–59 (In Russ.).

7. Takahashi D., Kamo M., Kurose Y., Nomura H. Deep steel desulphurization technology in ladle furnace at KSC. Ironmaking and Steelmaking. 2003, vol. 30, no. 2, pp. 116–119.

8. Iwamasa P.K. and Fruehan R. J. Formation and behaviour of Mn containing oxysulphide inclusions during desulphurisation, deoxidation and alloying. Metall. Mater. Trans. 1997, vol. 28, 47 p.

9. Yan P., Guo X., Huang S., Dyck J., Guo M., Blanpain B. Desulphurisation of stainless steel by using CaO–Al2 O3 based slags during secondary metallurgy. ISIJ International, 2013, vol. 53, no. 3, pp.  459–467.

10. Gaye H. and Lehmann J. Modeling and prediction of reactions involving metals, slags and fluxes. VII Int. Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, pp. 619–624.

11. Hui-xiang Yu, Xin-hua Wang, Mao Wang, Wan-jun Wang. Desulfurization ability of refining slag with medium basicity. Int. J. Miner. Metall. Mater, 2014, vol. 21, no. 12, pp. 1160–1166.

12. Akberdin A.A., Kireeva G.M., Medvedovskaya I.A. Influence of B2 O3 on the viscosity of slags of CaO – SiO2  – Al2 O3 system. Izv. AN SSSR. Metally. 1986, no. 3, pp. 55–56. (In Russ.).

13. Wamg H., Li G., Dai R. САS-OB refining: slag modification with В2 О3 – CaO and СаF2 – CаО. Ironmaking and Steelmaking. 2007, vol. 34, Issue 4, pp. 350–353.

14. Babenko A.A., Istomin S.A., Protopopov E.V., Sychev A.V., Ryabov V.V. Viscosity of СaО – SiO2 – Al2 O3 – MgO – B2 O3 slag system. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2014, no. 2, pp. 41–43. (In Russ.).

15. Kim V.A., Akberdin A.A., Kulikov I.S. The use of simplex lattices method for charting structure - viscosity diagrams. Izvestiya VUZov. Chernay metallurgiya = Izvestiya. Ferrous Metallurgy. 1980, no. 9, pp. 167–168. (In Russ.).

16. Kim V. A., Nikolai E. I., Akberdin A. A., Kulikov I. S. Planirovanie eksperimenta pri issledovanii fiziko-khimicheskikh svoistv metallurgicheskikh shlakov: metodicheskoe posobie [Planning of experiment at the study of physical - chemical properties of metallurgical slags: Manual]. Alma-Ata: Nauka, 1989, 116 p. (In Russ.).

17. Upolovnikova A.G., Babenko A.A. Thermodynamic modeling of boron recovery from boron slags. Butlerovskie soobshcheniya. 2016, vol. 48, no. 10, pp. 114–118. (In Russ.).

18. Babenko A.A., Zhuchkov V.I., Smirnov L.A., Sychev A.V., Upolovnikova A.G. The use of simplex lattices method for constructing the composition-viscosity diagrams of the slags of CaO – SiO2  –  Al2 O3  – MgO – B2 O3 system. Butlerovskie soobshcheniya. 2016, vol.  48, no. 11, pp. 40–44. (In Russ.).

19. Babenko A.A., Zhuchkov V.I., Smirnov L.A., Sychev A.V., Akberdin A.A., Kim A.S., Vitushchenko M.F., Dobromilov A.A. Production technology for low-carbon, low-sulfur boron steel. Steel in Translation. 2015, vol. 45, no. 11, pp. 883–886.

20. Babenko A.A., Smirnov L.A., Zhuchkov V.I., Selivanov E.N. Development of the technology of deep metal desulphurization and microalloying of steel by boron on ladle furnace under the slags of CaO – SiO2  – Al2 O3  – MgO – B2 O3 system. In: Sbornik trudov XIII mezhdunarodnogo kongressa staleplavil’shchikov [Proceedings of the 8th Int. Congress of Steelmakers]. Moscow-Polevskoy: izd. “Assotsiatsiya staleplavil’shchikov”, 2014, pp. 174–177. (In Russ.).


Review

For citations:


Babenko A.A., Zhuchkov V.I., Upolovnikova A.G., Kel’ I.N. STUDY OF THE VISCOSITY OF SLAGS OF СаО–SiO2 –В2 О3 – 25 % Al2 O3 – 8 % MgO SYSTEM. Izvestiya. Ferrous Metallurgy. 2017;60(10):820-825. (In Russ.) https://doi.org/10.17073/0368-0797-2017-10-820-825

Views: 778


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)