Preview

Izvestiya. Ferrous Metallurgy

Advanced search

THERMODYNAMIC JUSTIFICATION OF OPPORTUNITY OF USING HIGH-TEMPERATURE COMBUSTION FLANKS FOR OXIDATION OF MELT IMPURITIES IN AGGREGATES OF CONVERTER TYPE. REPORT 2. INTERACTION OF THE FLANK WITH METAL AND SLAG IN THE CONVERTER BATH

https://doi.org/10.17073/0368-0797-2017-10-811-819

Abstract

A thermodynamic analysis of the physicochemical processes taking place in the converter bath using gas-oxygen burners for intensive bath heating was performed. In the working space of the unit, when the combustion flanks interact with the converter bath, the oxygen supplied by the burners and the natural gas, as well as the oxygen supplied through the tuyere, react in a bubbling slag and metallic emulsion, as a result of which iron and impurities are oxidized. It is established that the use of flank burners changes the composition of the gas phase in which in H2 and H2O, changing the oxidizing ability of the gas phase, are found in addition to O2 , CO, CO2 . The presence of solid carbon (for example, pulverized coal fuel) in the flank burner can control and intensify the burning process. The burning process is the most efficient in the oxidation of carbon to CO with the excess oxygen factor less than 1.0. During melt carbon oxidation at a change in the carbon activity depending on its concentration in the melt and temperature, the oxidation conditions of carbon also change. As a universal characteristic of the description of Me – O – C system equilibrium it is proposed to use the oxygen partial pressure PO2 , as well as the accompanying characteristics PCO /PCO2 and PH2 /PH2O . It is determined that the oxidation of iron can be carried out by oxygen to insignificant degree with carbon dioxide, while water vapor at temperatures of 1600  –  2000  K practically does not oxidize iron. Oxidation of carbon dissolved in the metal is carried out quite efficiently with oxygen and carbon dioxide to the concentration less than 0.1  %. The water vapor is a very poor carbon oxidant, a weak oxidant of manganese and silicon. The intensity of oxidation of oxygen dissolved in the metal of carbon increases with the increase of temperature, of silicon and manganese – decreases. The reoxidized slag with a high content of FeO oxide at temperatures above 1800  K can serve as an oxidizer for: silicon (up to Si <  2 %), manganese (Mn  <  1  %), carbon (C <  1.5 %).

About the Authors

V. V. Solonenko
Siberian State Industrial University
Russian Federation

Candidates for a degree of Сand. Sci. (Eng.) of the Chair of Ferrous Metallurgy,

Novokuznetsk



E. V. Protopopov
Siberian State Industrial University
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair of Ferrous Metallurgy,

Novokuznetsk



S. V. Feiler
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor, Head of the Chair of Ferrous Metallurgy,

Novokuznetsk



M. V. Temlyantsev
Siberian State Industrial University
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Thermal Power and Ecology”,

Novokuznetsk



N. F. Yakushevich
Siberian State Industrial University
Russian Federation

Dr. Sci. (Eng.), Professor-Consultant of the Chair “Non-ferrous Metallurgy and Chemical Engineering”,

Novokuznetsk



References

1. Solonenko V.V., Protopopov E.V., Feiler S.V., Yakushevich N.F. Thermodynamic justification of opportunity of using high-temperature combustion flanks for oxidation of melt impurities in aggregates of converter type. Report 1. Thermodynamic analysis of the processes in combustion flame when using natural gas. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 7, pp. 556–564. (In Russ.).

2. Chernyatevich A.G., Aizatulov R.S., Gal’perin G.S., Gress A.V., Protopopov E.V., Ganzer L.A., Zolotukhin N.R. Bokovaya furma dlya podogreva loma i dozhiganiya otkhodyashchikh gazov v polosti konvertera [Side lance for scrap preheating and afterburning of waste gases in the converter cavity]. Certificate of authorship USSR no. 1560566. Byulleten’ izobretenii. 1990, no. 16. (In Russ.).

3. Tulin N.A., Morozov A.N., Kravtsov N.F., Markov B.L., Kirsanov  A.A. Operation of 130t oxygen furnaces with preheating of the scrap by gas-oxygen burners. Steel USSR. 1974, vol. 4, no.  5, pp.  356–358.

4. Bowden J.J. Method of preheating and charging scrap to a BOF. Patent US no. 3479178 A. 24.05.1966.

5. Nugumanov R.F., Protopopov E.V., Chernyatevich A.G. Prospective technologies for preheating scrap in the cavity of the converter. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2009, no. 2, pp. 63–66. (In Russ.).

6. Heikki J. Experiences in phsicochemical modelling of oxygen converter process (BOF), Shon International Symposium Advanced Processing of Metals and Materials – Thermo and Physicochemical Principles. Iron and Steel Making. 2006, vol. 2, pp. 541–554.

7. Trentini B. Scrap consumption in the oxygen converter. Steel Times. 1985, no. 12, pp. 608–610.

8. Protopopov E.V., Lavrik A.N., Ganzer L.A. Mathematical model of hydrodynamics and gas transport in gas-slag and gas-metal phases in a converter with combined blowing. Vestnik gorno-metallurgicheskoi sektsii Rossiiskoi akademii estestvennykh nauk. Otdelenie metallurgii. 2001, no. 10, pp. 45–54. (In Russ.).

9. Kubisek K., Frohberg M.G. Hydrodynamische Modelluntersuchungen zum bodenblasender Converter. Arch. Eisenhüttenw. 1981, bd.  52, no. 1, pp. 7–14.

10. Baptizmanskii V.I., Borisov Yu.N., Lonskii A.M., Trubavin V.I., Makhnitskii V.A., Bulavka O.A. Wave formation in the converter with a combined blowing. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1987, no. 8, pp. 21–24. (In Russ.).

11. Сhatterjee A. On some aspects of supersonic jets of interest in LD Steelmaking. Iron and Steel. 1972, vol. 45, no. 6, pp. 627–634.

12. Klein H., Liesch I., Iso H., Nakamura K. Scrap ratio increase by coal injection in the BOF. Steelmaking Proceedings. 1983, vol. 68, pp. 129–136.

13. Goedert F., Klein H., Henrion R. etc. The ALCI Technology: ARBED lance coal injection. Fochberichte Hüttenpraxis Metallweiterverarbeitung. 1986, vol. 24, no. 4, pp. 214–219.

14. Zaitsev A.I., Mogutnov B.M., Shakhpazov E.Kh. Fizicheskaya khimiya metallurgicheskikh shlakov [Physical chemistry of metallurgical slags]. Moscow: Interkontakt nauka, 2008, 351 p. (In Russ.).

15. John F. Elliott, Molly Gleiser. Thermochemistry for steelmaking. Reading, Mass., Addison-Wesley Inc., 1960, 296 p.

16. Schlackenatlas. Verein Deutscher Eisenhüttenleute. Verlag Stahleisen, 1981, 282 p. (Russ. ed.: Atlas shlakov. Sprav. Moscow: Metallurgiya, 1985, 208 p.).

17. Belov N.A. Diagrammy sostoyaniya troinykh i chetvernykh sistem: uchebnoe posobie dlya vuzov [State diagrams of triple and quad systems: Textbook for universities]. Moscow: MISIS, 2007, 360 p. (In Russ.).

18. Termodinamicheskie svoistva individual’nykh veshchestv. T. 1 – 6 [Thermodynamic properties of individual substances. Vols. 1 – 6]. Glushko V.P. ed. Moscow: Nauka, 1979 – 1982, 1620 p. (In Russ.).

19. Tolstoguzov N.V. Teoreticheskie osnovy i tekhnologiya plavki kremnistykh i margantsevykh splavov [Theoretical bases and technology of melting of siliceous and manganese alloys]. Moscow: Metallurgiya, 1992, 239 p. (In Russ.).

20. Turkdogan E.T. Physical chemistry of high temperature technology. Academic Press, 1980, 447 p.


Review

For citations:


Solonenko V.V., Protopopov E.V., Feiler S.V., Temlyantsev M.V., Yakushevich N.F. THERMODYNAMIC JUSTIFICATION OF OPPORTUNITY OF USING HIGH-TEMPERATURE COMBUSTION FLANKS FOR OXIDATION OF MELT IMPURITIES IN AGGREGATES OF CONVERTER TYPE. REPORT 2. INTERACTION OF THE FLANK WITH METAL AND SLAG IN THE CONVERTER BATH. Izvestiya. Ferrous Metallurgy. 2017;60(10):811-819. (In Russ.) https://doi.org/10.17073/0368-0797-2017-10-811-819

Views: 592


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)