Preview

Izvestiya. Ferrous Metallurgy

Advanced search

THERMODYNAMIC SIMULATION OF CHEMICAL AND PHASE TRANSFORMATIONS IN THE SYSTEM OF OXIDIZED MANGANESE ORE – CARBON

https://doi.org/10.17073/0368-0797-2017-9-759-765

Abstract

Thermodynamic simulation of chemical and phase transformations was made for the system of oxidized manganese ore – carbon.  Prediction of thermodynamic simulation of chemical and phase transformations in the system was carried out using “Astra 4” multipurpose software system designed for simulation of equilibrium states  and processes in high temperature systems with chemical and phase  transformations developed in Bauman MSTU. Calculations of phase  composition and characteristics of the equilibrium were carried out using the reference database on properties of individual substances. The  basis for information in the database of “Astra 4” software complex  are thermodynamic, thermo-physical and thermochemical properties  of individual substances, which were systematized at the Institute of  High Temperatures of USSR Academy of Sciences and National Bureau of Standards of the United States, published in periodicals, monographs, handbooks, and processed and calculated in Bauman MSTU.  The study of simulation of chemical and phase transformations in the  system were carried out in the temperature range of 1573  –  2573  K  with carbon content of 5  –  10  –  15  % in the system and pressure of  0.1  MPa. During the simulation it was found that the maximum transition degree of manganese into kMn5Si3 is up to 95.3  % at T =  1873  K  and 30  % content of reductant in the system, with further increase in  temperature, the manganese begins to move in to the gas phase. Silicon in comparison with manganese, recovers more difficultly, and with  temperature increasing begins to transit into the gas phase, the most  optimal temperature interval of silicon recovery is 1773  –  1873  K with  the content of reductant in the system from 15 to 30  %. The transition degree of iron (αFe ,  %) in the system depending on temperature  and %  content of the reducing agent, allowed to determine the optimal  temperature range of 1773  –  1873  K when the content of the reducing  agent is 15  %. Thermodynamic modeling of phase transitions of the  system manganese ore – reducing agent allowed to perform the opportunity of obtaining ferro-silico-manganese from refractory oxidized  manganese ore of “Western Kamys” deposit by electric smelting.

About the Authors

A. S. Kolesnikov
Kazakhstan South State University named after M.O. Auezov.
Kazakhstan

Cand. Sci. (Eng.), Assist. Professor of the Chair “Technology of Cement, Ceramics and Glass”.

 Shymkent.



I. V. Sergeeva
Saratov State Agrarian University named after N.I. Vavilov.
Russian Federation

Dr. Sci. (Biological), Professor, Head of the Chair “Bota ny, Chemistry and Ecology”.

 Saratov.



N. E. Botabaev
Kazakhstan South State University named after M.O. Auezov.
Kazakhstan

Dr. Sci. (Eng.), Professor, Dean of the Higher School of Textile and Food Engineering. 

 Shymkent.



A. Zh. Al’zhanova
Kazakhstan South State University named after M.O. Auezov.
Kazakhstan

Cand. Sci. (Eng.), Assist. Professor, Head of the Chair “Technology of Cement, Ceramics and Glass”. 

 Shymkent.



Kh. A. Ashirbaev
Kazakhstan South State University named after M.O. Auezov.
Kazakhstan

Cand. Sci. (Eng.), Assist. Professor, Head of the Chair “Mathematics for Technical Specialties”. 

Shymkent.



References

1. Tolymbekov M.Zh. Manganese ore industry of Kazakhstan. Gornyi zhurnal Kazakhstana. 2007, no. 2, pp. 2–5. (In Russ.).

2. Uzhkenov B.S., Mazurov A.K., Selifonov E.M. The state of resource base of iron, manganese and chromite ores of Kazakhstan and development prospects of ferrous metallurgy in the period up to  2030. Industriya Kazakhstana. 2003, no. 10 (18), p. 23. (In Russ.).

3. Svyatov B.A., Tolymbekov M.Zh., Baisanov S.O. Stanovlenie i razvitie margantsevoi otrasli Kazakhstana [Formation and development of manganese industry of Kazakhstan]. Almaty: Iskander,  2002, 416 p. (In Russ.).

4. Baisanov S.O., Tolymbekov M.Zh., Svyatov B.A. Manganese production  in  Kazakhstan.  In:  Sostoyanie margantsevorudnoi bazy Rossii i voprosy obespecheniya promyshlennosti margantsem: sb. nauch. tr. [State of the manganese ore basis in Russia and manganese supply to industry: Coll. of sci. papers]. Krasnoyarsk, 2001,  p.  32. (In Russ.).

5. Baisanov A.S. Fazovye ravnovesiya i kinetika protsessa pirometallurgicheskoi pererabotki zhelezomargantsevykh rud: dis…kand. tekhn. nauk [Phase equilibriums and kinetics of pyrometallurgical  processing of iron-manganese ores: Cand. Tech. Sci. Diss.]. Karaganda: KhMI, 2007, 168 p. (In Russ.).

6. Tolymbekov M.Zh., Takenov T.D., Akhmetov A.B. Pryamoe legirovanie stali margantsem [Direct alloying of steel with manganese].  Almaty: NITs «Ғylym», 2003, 304 p. (In Russ.).

7. Nobuhiko T., Hatanaka A., Kaku H., Kurihara K., Saitoh G. Development of iron-making technology. Nippon Steel Technical Report.  2012, no. 101, pp. 79–88.

8. Kolesnikov A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russian Journal of Non-Ferrous Metals. 2015, vol. 56,  no.  1, pp. 1–5.

9. Ying Yi Zhang, Yuan Hong Qi, Zong Shu Zou, Yun Gang Li. Development prospect of rotary hearth furnace process in China. Advanced Materials Research. 2013, vol. 746, pp. 533–553.

10. Kolesnikov A.S.,  Kapsalyamov  B.A.,  Kolesnikova  O.G.  Kuraev  R.M., Stryukovskii I.A. Processing technology for waste of zinc  industry to produce ferroalloy and sublimates of non-ferrous metals.  Vestnik YuUrGU. 2013, no. 1, pp. 34–39. (In Russ.).

11. Dashevskii V.Ya., Yusfin Yu.S., Podgorodetskii G.S., Baeva N.V .  Production of manganese ferroalloys of manganese ore from Usinskoye field. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2013, vol. 56, no. 9, pp. 9–16. (In Russ.).

12. Kolesnikov A.S. Thermodynamic modeling of production of ferroalloy and sublimates of non-ferrous metals in the system milling  clinker – carbon. Aktual’nye innovatsionnye issledovaniya: Nauka i praktika. 2013, no. 2, pp. 12–17. Electronic resource. Available at  URL: http://actualresearch.ru/nn/2013_2 (In Russ.).

13. Kim A.S. Smelting ferroalloys by means of borate ores. Steel in Translation. 2008, vol. 38, no. 8, pp. 664–667.

14. Kolesnikov A.S. Thermodynamic modeling of ferronickel production from oxidized nickel ores of Kazakhstan. Vestnik YuUrGU.  2014, no. 1, pp. 12–18. (In Russ.).

15. Akberdin A.A., Yusfin Yu.S., Toimankulov T.B. Chart of equilibrium phase composition of Fe – Si – Mn – B. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2014, vol. 57,  no. 1, pp. 40–42. (In Russ.).

16. Dubinin N.E., Yuryev A.A., Vatolin N.A. Pseudopotential calculation of the structure and thermodynamics of liquid alkali metals with  a square-well model as a reference system. Journal of Structural Chemistry. 2012, vol. 53, no. 3, pp. 468–475.

17. Sinyarev G.B., Vatolin N.A., Trusov B.G. Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov [The  use of computers for thermodynamic calculations of metallurgical  processes]. Moscow: Nauka, 1982, 32 p. (In Russ.).

18. Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh  [Thermodynamic modeling in high temperature inorganic systems].  Moscow: Metallurgiya, 1994, 352 p. (In Russ.).

19. Belov G.V . Termodinamicheskoe modelirovanie: metody, algoritmy, programmy [Thermodynamic modeling: methods, algorithms, programs]. Moscow: Nauchnyi Mir, 2002, 184 p. (In Russ.).

20. Moiseev G.K., Vatolin N.A., Marshuk L.A., Il’inykh N.I. Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neor ganicheskikh veshchestv [Temperature dependences of the reduced  Gibbs energy of some inorganic substances]. Ekaterinburg: Institut  metallurgii UrO RAN, 1997, 231 p. (In Russ.).


Review

For citations:


Kolesnikov A.S., Sergeeva I.V., Botabaev N.E., Al’zhanova A.Zh., Ashirbaev Kh.A. THERMODYNAMIC SIMULATION OF CHEMICAL AND PHASE TRANSFORMATIONS IN THE SYSTEM OF OXIDIZED MANGANESE ORE – CARBON. Izvestiya. Ferrous Metallurgy. 2017;60(9):759-765. (In Russ.) https://doi.org/10.17073/0368-0797-2017-9-759-765

Views: 874


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)