Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ESTIMATION OF MECHANICAL DEFORMABILITY OF METALS BASED ON ENERGY DISSIPATION

https://doi.org/10.17073/0368-0797-2017-9-739-744

Abstract

Steels of various strength classes were distributed and analyzed  according to deformation resistance parameter. It is considered that  the deformation process in the thermodynamic aspect appears to be a  dissipative effect: a part of kinetic energy of the external mechanical  action transfers to the internal energy of the deformable metal with the  formation of a certain dislocation structure. Because of it the energy  criteria were proposed for the deformability of metal, determined in  the standard tensile test. The basis of these criteria is the deformation  work, which was determined by the area of the tension diagram. In this  case, the absorbed energy determines the unit rupture work, and the  rate of energy absorption determines the metal deformation resistance (compliance of plastic deformation). Quantitative assessment of dissipation effect demonstration with matching of the unit rupture work values and the compliance criteria was evaluated. The study was carried  out using standard tensile tests of samples, made of steels with various  strengths, achieved due to chemical composition (alloying) and heat  treatment, used to manufacture products of various structural purposes.  Herewith in the selected complex of steels, the yield strength range  was 210  –  1660  MPa, the ultimate strength was 840  – 1940  MPa. Consequently, it was established that unit rupture work of the concentrated  deformation much exceeds the unit rupture work of the uniform deformation. The criteria of the concentrated deformation compliance  are much lower than the criteria of uniform deformation compliance,  moreover, there is a noticeable correlation between it. The correlation  can be considered as a demonstration of the structural evolution of  metal in both stages of its deformation, in which, in the process of  self-organization of dissipative system, such as deformable metal, the  dislocation density serves as an internal parameter controlling the evolutionary transformation. The correlation between the compliance criteria and the ultimate stresses under uniform deformation and fracture  was established. Thereby, the ranking of steels with different strengths  per energy, absorbed during deformation, was conducted. In the applied aspect, the numerical values of the unit rupture work and the compliance criterion can be used for predicting the behavior of steels of  various strength classes under mechanical treatment and mechanical  action during operation.

About the Authors

R. E. Gliner
Nizhny Novgorod State Technical University named after R.Alexeev.
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Materials Science, Technology of Materials and Heat Treatment of Metals”. 

Nizhny Novgorod.



V. N. Dubinskii
Nizhny Novgorod State Technical University named after R.Alexeev.
Russian Federation

 Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials Science, Technology of Materials and Heat Treatment of Metals”. 

Nizhny Novgorod.



E. B. Katyukhin
Nizhny Novgorod State Technical University named after R.Alexeev.
Russian Federation

Postgraduate of the Chair “Materials Science, Technology of Materials and Heat Treatment of Metals”. 

Nizhny Novgorod.



V. A. Pryanichnikov
JSC “VolgoStal’Proekt”.
Russian Federation

Cand. Sci. (Eng.), Deputy Director.

 Nizhny Novgorod. 



References

1. Ivanova V.S. Sinergetika: Prochnost’ i razrushenie metallicheskikh materialov [Synergetics: strength and destruction of metal materials]. Moscow: Nauka, 1992, 155 p. (In Russ.).

2. Plekhov O.A., Panteleev I.A., Naimark O.B. nergy accumulation  and dissipation in metals as a result of structural-scaling transitions  in a mesodefect ensemble. Physical Mesomechanics. 2007, vol. 10,  no. 5-6, pp. 296–301.

3. Plekhov O.A. Naimark O.B. Theoretical and experimental study of  energy dissipation in the course of strain localization in iron. Journal of Applied Mechanics and Technical Physics. 2009, vol. 50,  no.  1, pp. 127–136.

4. Ivanov A.M., Lukin E.S. Peculiar features of energy dissipation of  structural steels. Zavodskaya laboratoriya. Diagnostika materialov.  2009, no. 11, pp. 46–49. (In Russ.).

5. Ivanov A.M.,  Lukin  E.S.  Strength  and  energy  dissipation  during plastic deformation of samples from tube steel. In: Materialy Mezhdunarodnoi konferentsii “Zhivuchest’ i konstruktsionnoe materialovedenie”, 2012 g. [Materials of the International Conference  “Vita lity and Structural Material Science”, 2012]. Moscow: IMASh  RAN, pp. 24–25. (In Russ.).

6. Kostina A.A, Bayandin Yu., Plekhov O.A. Modeling the process of  energy accumulation and dissipation during plastic deformation of  metals. Fizicheskaya mezomekhanika. 2014, vol. 17, pp. 44–48. (In  Russ.).

7. Pashinskaya E.G., Tkachenko V.M., Zavdoveev A.V . Dissipation of  energy upon tension of steel st3, obtained by intense plastic deformation by rolling with shear. Fizika i tekhnika vysokikh davlenii.  2016, no. 1, pp. 20–26. (In Russ.).

8. Lukin E.S., Ivanov A.M., Vainer B.G. Thermal imaging investigations in experimental mechanics. Russian Journal of Nondestructive Testing. 2003, vol. 39, no. 6, pp. 472–477.

9. Oliferuk W., Maj M. Stress – strain curve and stored energy during uniaxial deformation of polycrystals. Turop. J. Mech. A. Solids.  2009, no. 28, pp. 266–272. 

10. Benzerga A., Brechet Y., Needleman A., Van der Giessen E. The  stored energy of cold work: Prediction from discrete dislocation  plasticity. Acta Mater. 2005, no. 53, pp. 4765–4779. 

11. Iziumova A., Vshivkov A., Prokhorov A., Kostina A., Plekhov O.  The study of energy balance in metals under deformation and failure process. Quantitative InfraRed Thermography Journal. 2016,  vol.  13, pp. 242–256.

12. Vivier G., Trumel H., Hild F. On the stored and dissipated energies  in heterogeneous rate - independent systems. Continuum Mechanics and Thermodynamics. 2009, vol. 20, pp. 411–427.

13. Hodowany G. , Ravichandran G., Rosakis A., Rosakis P. Partition of  Plastic Work into Heat and Stored Energy in Metals. Experimental Mechanics. 2000, vol. 20, no. 2, pp. 113–120.

14. Bugrov Yu.V. Determination of specific work of plastic deformation while metal stretching. Zavodskaya laboratoriya. Diagnostika metallov. 2012, no. 3, pp. 66–68. (In Russ.).

15. Greben’kov S.K. Deformatsionnoe uprochnenie i struktura termoobrabotannykh nizkouglerodistykh martensitnykh stalei: Dis…kand. tekhn. nauk [Strain hardening and structure of heat-treated low-carbon martensite steels: Cand. Tech. Sci. Diss.]. Perm: PNIPU, 2014,  167 p. (In Russ.).

16. Gliner R.E., Katyukhin E.B. Ranking of metals by deformation resistance while mechanical treatment. Tekhnologiya metallov. 2014,  no. 11, pp. 9–16. (In Russ.).

17. Smirnov-Alyaev G.A. Soprotivlenie materialov plasticheskomu deformirovaniyu [Resistance of materials to plastic deformation]. Leningrad: Mashinostroenie, 1978, p. 54. (In Russ.).

18. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow: Nauka, 1994, 383 p. (In Russ.).

19. Drankin  B.M.,  Kononenko  V.K.,  Bez”yazychnyi  V.F.  Svoistva splavov v ekstremal’nom sostoyanii [Properties of alloys in the extreme state]. Moscow: Mashinostroenie, 2004, 256 p. (In Russ.).


Review

For citations:


Gliner R.E., Dubinskii V.N., Katyukhin E.B., Pryanichnikov V.A. ESTIMATION OF MECHANICAL DEFORMABILITY OF METALS BASED ON ENERGY DISSIPATION. Izvestiya. Ferrous Metallurgy. 2017;60(9):739-744. (In Russ.) https://doi.org/10.17073/0368-0797-2017-9-739-744

Views: 903


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)