Preview

Izvestiya. Ferrous Metallurgy

Advanced search

IMPROVING THE EFFICIENCY OF GENERATING COMPRESSED AIR AT METALLURGICAL PLANT

https://doi.org/10.17073/0368-0797-2017-9-720-725

Abstract

At large-scale iron and steel enterprises compressed air is generated at CHP (combined heat and power plant) – blowing house, that generates heat and compressed air to the needs of industry. Electri city and  heat are generated at steam turbine plants (STP, cogeneration units). As  a general thing a single-stage compressors and compounded steam turbine driven compressors are used to compress air. If using compounded compressors air cooling is conducted only before the se cond stage  to reduce energy costs/consumption. In order to get that done heat exchangers are used and water is a cooling medium/heat-transfer fluid.  Water temperature is reduced with the help of atmospheric air after  heat exchangers in cooling towers. Decrease of temperature after heat  exchangers is conducted in cooling tower by atmospheric air. Air of  environment temperature goes to the compressor first stage. Putting to  use this system, the temperature of cooled air before compressor stages  depends mainly on environment temperature not to give an opportunity to decrease air temperature before compressor stages to required/ desired values, particularly in summer. In this paper there is a power  cycle at CHP (combined heat and power plant) – blowing house of iron  and steel enterprise, where in addition absorption thermotransformer  as refrigerating machine has been used (AbTT). Extraction steam of  power turbine is used to drive AbTT. In this power cycle AbTT is used  to decrease air temperature in the inlet of the first and second compressor stages. Thermodynamic effectiveness of the newly developed  system has been performed. Total fuel consumption at CHP (combined  heat and power plant) – blowing house has been taken as a performance criterion with all else being equal. Functional connections to  determine the change of total fuel consumption for power, heat generation and compressed air with AbTT in compare with the original one  are presented. This estimation has presented that the use of AbTT gives  the possibility to reduce air temperature before compressor stages by  10  °C and total overall fuel consumption in terms of reference fuel by  0.15  ton of reference fuel/h.

About the Authors

A. V. Klimenko
Moscow Power Engineering Institute (MPEI).
Russian Federation

Academician of the Russian Academy of Sciences, Dr. Sci. (Eng.), Chief Researcher. 

Moscow.



A. V. Koryagin
Moscow Power Engineering Institute (MPEI).
Russian Federation

A.V. Koryagin, Cand. Sci. (Eng.), Assist. Professor of the Chair of Heat and Mass Transfer Processes and Units.

 Moscow.



V. S. Agababov
Moscow Power Engineering Institute (MPEI).
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair of Thermal Power Plants.

 Moscow.

 



References

1. Kalinin N.V., Kabanova I.A., Galkovskii V.A., Kostyuchenko V.M.  Sistemy vozdukhosnabzheniya promyshlennykh predpriyatii [Air supply system in industry]. Smolensk: Smolenskii filial MEI (TU),  2005, 122 p. (In Russ.).

2. Demin Yu.K., Slepova I.O., Kartavtsev S.V . Energy-efficiency measures in compressed air production for metal industry. In: Trudy VII mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 150-letiyu velikogo russkogo metallurga V.E. GrumGrzhimailo “Energosberegayushchie tekhnologii v promyshlennosti. Pechnye agregaty. Ekologiya” [Academic conference paper  of the 7th Int. Academic Conference marking the 150th Anniversary  of great Russian metallurgist Groom-Grzimailo birth “Energy saving solution in industry, furnace units, ecology”]. Moscow: MISiS,  2014, pp. 168–173. (In Russ.).

3. Katalog. Kompressornye mashiny i turbiny AOOT “Nevskii zavod”  [Catalogue. Compressor machines and turbines of OJSC “Nevskii  zavod”]. Moscow: TsNIITEItyazhmash, 2000, 160 p. (In Russ.).

4. Baranenko A.V., Bukharin N.N., Pekarev V.I., Sakun I.A., Timofeevskii L.S. Kholodil’nye mashiny: uchebnik dlya studentov vuzov [Refrigerating machines: Textbook for universities].Timofeevskii  L.S.  ed. St. Petersburg: Politekhnika, 1997, 992 p. (In Russ.).

5. Popel’ O.S., Frid S.E., Sharonov S.S. An analysis of the operation  of a solar adsorption periodic-duty refrigerating plant. Thermal Engineering. 2007, vol. 54, no. 8, pp. 614–619.

6. Popel’ O.S., Frid S.E., Aristov Yu.I. Energy data of absorption solar  refrigerator. Optimal reactivation temperature. Al’ternativnaya energetika i ekologiya. 2007, no. 10, pp. 42–50. (In Russ.). 

7. Kalnin’ I.M. Energy efficiency and environmental safety of refrigeration systems. Kholodil’naya tekhnika. 2008, no. 3, pp. 12–14. (In  Russ.).

8. Novaya generatsiya. Absorbtsionnye kholodil’nye mashiny – ABKhM [Absorption refrigerating machines – AbRM]. Electronic  resource.  Available  at  URL:  http://www.manbw.ru/analitycs/absorbtion_chillers_absorptive_refrigerators-ABHM.html (Accessed:  12.08.2014). (In Russ.).

9. ESKO Energetika i promyshlennost’. Preimushchestva ABKhM pered “obychnymi” parokompressionnymi chillerami, potreblyayushchimi elektroenergiyu v bol’shom ob”eme [ESKO power engineering and industry. Advantages of absorption refrigerating machines over conventional vapor compression refrigerating machines  with electric energy input]. Electronic resource. Available at URL:  http://journal.esco.co.ua/industry/20139/art307.html.  (Accessed:  04.09.2014). (In Russ.).

10. Pyatyi sezon. Absorbtsionnye kholodil’nye mashiny (ABKhM) SAKURA  [The  5th  season.  Absorption  refrigerating  machines  (AbRM) SAKURA]. Electronic resource. Available at URL: http:// www.5season.ru/absorption-chillers-abkhm-sakura/  (Accessed:  04.09.2014). (In Russ.).

11. Pozitivnyi klimat. Absorbtsionnye bromisto-litievye kholodil’nye mashiny (ABKhM) Shuangliang [Positive climate. Absorption lithium bromide refrigerating machines (AbRM) Shuangliang]. Electronic resource. Available at URL: http://www.aircool-climate.com/index.php?name=Dahaci (Accessed: 04.09.2014). (In Russ.).

12. Chillers.ru. ZAO “Ostrov”. Dvorets sporta “Arena-Mytishchi”  [Chillers.ru. ZAO Ostrov. The palace of sports Arena- Mytishchi].  Electronic  resource.  Available  at  URL:  http://www.chillers.ru/equipm/installation/ostrov/index.php  (Accessed:  12.08.2014).  (In  Russ.).

13. Kompaniya “Fabrika kholoda”. Tipy promyshlennykh kholodil’nikov [Types of industrial cold-storage plants]. Electronic resource.  Available  at  URL:  http://www.fbh.ru/tipi_promishlennih_holodlnikov (Accessed: 12.08.2014). (In Russ.).

14. Aleinikova A.A. Absorption refrigerating machines BROAD in trigeneration. Vestnik Belneftekhima. 2009, no. 17, p. 21. (In Russ.).

15. Thermax. O brende [THERMAX]. Electronic resource. Available  at  URL:  http://abxm-thermax.ru/home/thermax-abxm  (Accessed:  04.09.2014) (In Russ.).

16. Kholodil’naya industriya. Obzor kholodil’nogo rynka v Rossii [Refrigeration. Market review of refrigerating in Russia]. Electronic  resource.  Available  at  URL:  http://www.holodcatalog.ru/entsiklopedii/obzory-i-analitika/obzor-kholodilnogo-rynka-v-rossii/  (Accessed: 07.10.2014). (In Russ.).

17. Vul’man F.A., Koryagin A.V., Krivoshei M.E. Matematicheskoe modelirovanie teplovykh skhem paroturbinnykh ustanovok na EVM [Mathematic  simulation  of  cycle  arrangement  of  steam  turbine  plant]. Moscow: Mashinostroenie, 1985, 112 p. (In Russ.).

18. SNiP 23-01-99 “Stroitel’naya klimatologiya (Aktualizirovannaya redaktsiya)” [SNIP (Construction rules and regulations) 23-01-99  “Construction climatology (Revised edition)”]. (In Russ.).

19. Demin Yu.K., Khasanova R.V., Neshporenko E.G., Kartavtsev  S.V.  Development of interstage refrigeration system of compressible gas  in the industrial gas supply of steelmaking industry. Elektrotekhnicheskie sistemy i kompleksy. 2017, no. 1(34), pp. 37–43. (In Russ.).

20. Klimenko A.V., Agababov V.S., Il’ina I.P., Rozhnatovskii V.D., Burmakina A.V . Layouts of trigeneration plants for centralized power  supply. Thermal Engineering. 2016, vol. 63, no. 6, pp. 614–621.


Review

For citations:


Klimenko A.V., Koryagin A.V., Agababov V.S. IMPROVING THE EFFICIENCY OF GENERATING COMPRESSED AIR AT METALLURGICAL PLANT. Izvestiya. Ferrous Metallurgy. 2017;60(9):720-725. (In Russ.) https://doi.org/10.17073/0368-0797-2017-9-720-725

Views: 844


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)