Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF RELAXATION PROCESSES ON MECHANICAL STRESS SHIFTS IN AMORPHOUS AND NANOCRYSTALLINE RIBBON ALLOYS AT ELECTROPULSE EXPOSURE

https://doi.org/10.17073/0368-0797-2017-7-538-543

Abstract

Relaxation processes in amorphous and nanocrystalline alloys in temperature range of –196  ÷  80  °C have been studied. It was established that in amorphous alloy stress relaxation occurs in two stages. At the same time, decrease in initial mechanical stress in the sample by 5  % only occurs during the holding time of at least 1  hour. An increase in temperature of the sample leads to more intensive relaxation, which is manifested in an increase in rate of mechanical stress decrease. At the temperature of liquid nitrogen, stress relaxation is not observed. It has been established that in nanocrystalline alloy relaxation processes proceed in a similar manner, but relaxation rate is much lower. Dependences of residual mechanical stress on temperature and holding time were studied. It was found that in amorphous and nanocrystalline alloys, areas of stabilization of residual mechanical stresses are observed at small holding time (less than 5 min) in temperature ranges of 50  –  60 and 40  –  50  °C. Increase in holding time leadsto monotonousfall in residual mechanical stresses. Heating up to 40  °C results in complete relaxation of mechanical stresses in the sample 15  minutes after the start of the testing. It is shown that preliminary relaxation of stresses in amorphous alloy leads to decrease in value of mechanical stress relieving during electropulse ipmact in samples subjected to stretching. In nanocrystalline alloy, value of relieving remains practically unchanged under the indicated impact. It is also shown that the observed effect occurs due not only to thermal expansion, but also to change in the value of reversible component of directed structural relaxation. In the course of work it was established that value of mechanical stress relieving in amorphous alloy depends on medium in which electric current impulse is supplied. In particular, in liquid nitrogen medium, decrease in value of relieving is observed. Such a decrease is not observed in nanocrystalline alloy.

About the Authors

D. Yu. Fedotov
Tambov State University named after G.R. Derzhavin
Russian Federation
Assistant of the Chair of Theoretical and Experimental Physics


S. A. Sidorov
Tambov State University named after G.R. Derzhavin
Russian Federation
Research Associate of the Chair of Theoretical and Experimental Physics


V. A. Fedorov
Tambov State University named after G.R. Derzhavin
Russian Federation
Dr. Sci. (Phys.-math.), Professor of the Chair of Theoretical and Experimental Physics


T. N. Pluzhnikova
Tambov State University named after G.R. Derzhavin
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor of the Chair of Theoretical and Experimental Physics


A. V. Yakovlev
Tambov State University named after G.R. Derzhavin
Russian Federation
Cand. Sci. (Phys.-math.), Assist Professor of the Chair of Pedagogy and Educational Technologies


References

1. Suryanarayana С., Inoue A. Bulk metallic glasses. Taylor and Francis Group, 2011, 548 p.

2. Schroers J. Processing of bulk metallic glass. Advanced Materials.  2010, no. 22, pp. 1566–1597.

3. Nair  B.,  Priyadarshini  G.  Process,  structure,  property  and  applications of metallic glasses. Materials Science. 2016, vol. 3, no. 3,  pp.  1022–1053.

4. Glezer A.M., Permyakova I.E., Gromov V.E., Kovalenko V.V. Me-khanicheskoe povedenie amorfnykh splavov [Mechanic behavior of  amorphous  alloys].  Novokuznetsk:  izd.  SibGIU,  2006,  416  p.  (In  Russ.). 

5. Hufnagel  T.C.,  Schuh  C.A.,  Falk  M.L.  Deformation  of  metallic  glasses:  Recent  developments  in  theory,  simulations,  and  experiments. Acta Materialia. 2016, no. 109, pp. 375–393.

6. Gromov V.E., Zuev L.B., Kozlov E.V., Tsellermaer V.Ya. Elektrostimulirovannaya plastichnost’ metallov i splavov [Electrostimu-lated plasticity of metals and alloys]. Moscow: Nedra, 1996, 293  p.  (In Russ.).

7. Troitskii  O.A.,  Baranov  Yu.V.,  Avraamov  Yu.S.,  Shlyapin  A.D.  Fizicheskie osnovy i tekhnologii obrabotki sovremennykh mate-rialov (teoriya, tekhnologii, struktura i svoistva) [Physical fundamentals and technologies of processing of modern materials (theory,  technology,  structure  and  properties)].  Moscow:  Izd-vo  RKhD,  ANO IKI, 2004, vol. I, 590 p.; vol. II, 467 p. (In Russ.).

8. Sarac B. Microstructure-property optimization in metallic glasses.  Springer, 2015, 89 p.

9. Amorfnye metallicheskie splavy: sb. nauch. tr. [Amorphous metallic alloys: collection of sci. works]. Lyuborskii F.E. ed. Moscow:  Metal lurgiya, 1987, 584 p. (In Russ.).

10. Demidenko  V.S.,  Naumov  I.I.,  Kozlov  I.V.,  Kul’kova  S.E.,  Lot-kov  A.I., Potekaev A.I. Structural instability in metals and alloys.  Russian Physics Journal. 1998, vol. 41, no. 8, pp. 743–753.

11. Amorphous Metals.  Eds.  Suzuki  K.,  Fujimori  H.,  Hashimoto  K.  London:  Butterworths,  1983.  (Russ.ed.:  Suzuki  K.,  Fujimori  H.,  Hashimoto  K.  Amorfnye metally.  Moscow:  Metallurgiya,  1987,  328  p.)

12. Qiao J.C., Wang Q., Crespo D., Wang Y., Pelletier J.M. Secondary  relaxation  and  dynamic  heterogeneity  in  metallic  glasses: A  brief  review. Chin. Phys. 2017, vol. 26, no. 1, pp. 016402–016412.

13. Sidorov S.A., Fedorov V.A., Pluzhnikova T.N., Kirillov A.M., Ya-kovlev A.V., Chernikova A.A. Investigation of deformation processes  in  amorphous  alloys  under  pulse  electric  current.  Vestnik Tambovskogo gosudarstvennogo universiteta. Seriya: estestvennye i tekhnicheskie nauki. 2012, vol. 17, no. 1, pp. 135–138. (In  Russ.).

14. Verduzco J.A. Fatigue fracture morphologies of some Fe-based amorphous alloy wires. Materials Letters. 2003, vol. 57, pp.  1029–1033.

15. Fedorov V.A., Pluzhnikova T.N., Sidorov S.A. The effect of pulsed  electric current on the dependence mechanical stress – deformation  in amorphous and nanocrystalline metallic alloys. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy.  2013,  no.  12, pp. 62–64. (In Russ.).

16. Pluzhnikova T.N., Fedorov V.A., Sidorov S.A., Yakovlev A.V. The  influence of aggressive media on the deformation of amorphous and nanocrystalline alloys from exposure to pulsed electric current. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2013, no. 4, pp. 59–62. (In Russ.).

17. Sidorov S.A., Fedorov V.A., Druchinina O.A. Effect of pulse electric current on mechanical properties of hydrogenated metal glasses  on the base of cobalt and iron. Al’ternativnaya energetika i ekologiya. 2013, no. 1-1 (117), pp. 10–13. (In Russ.).

18. Stolyarov  V.V.  Electroplastic  effect  in  nanocrystalline  and  amorphous  alloys.  Materials Science and Technology.  2015,  vol.  31,  no.  13a, pp. 1536–1540.

19. Yiu P., Hsueh C.H., Shek C.H. Electroplastic forming in a Fe-based  metallic  glass  ribbon.  Journal of Alloys and Compounds.  2016,  vol.  658, pp. 795–799.

20. Kosilov A.T., Khonik V.A. Directed structural relaxation and homogeneous flow of recently quenched metal glasses. Izvestiya RAN. Seriya fizicheskaya. 1993, vol. 57, no. 12, pp. 192–198. (In Russ.).


Review

For citations:


Fedotov D.Yu., Sidorov S.A., Fedorov V.A., Pluzhnikova T.N., Yakovlev A.V. INFLUENCE OF RELAXATION PROCESSES ON MECHANICAL STRESS SHIFTS IN AMORPHOUS AND NANOCRYSTALLINE RIBBON ALLOYS AT ELECTROPULSE EXPOSURE. Izvestiya. Ferrous Metallurgy. 2017;60(7):538-543. (In Russ.) https://doi.org/10.17073/0368-0797-2017-7-538-543

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)