METALLOGRAPHIC INVESTIGATIONS OF QUALITY OF WELDING SEAM OBTAINED BY SILICOMANGANESE SLAG FLUX WELDING
https://doi.org/10.17073/0368-0797-2017-7-531-537
Abstract
About the Authors
R. E. KryukovRussian Federation
Cand. Sci. (Eng.), Senior Lecturer of the Chair “Materials, Foundry and Welding Production”
N. A. Kozyrev
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Materials, Foundry and Welding Production”
O. D. Prokhorenko
Russian Federation
Cand. Sci. (Eng.), Leading Methodologist
L. P. Bashchenko
Russian Federation
Cand. Sci. (Eng.), Deputy Executive Secretary of the journal "Izvestiya VUZov. Ferrous metallurgy"
N. V. Kibko
Russian Federation
Cand. Sci. (Eng.), Senior Engineer
References
1. Puchol R.Q., Blanco J.R., Gonzalez L.P., Hernández G.C., Gómez Pérez C.R. The influence of the air occluded in the deposition layer of flux during automatic welding: a technological aspect to consider in the quality of the bead. Welding International. 2009, vol. 23, no. 2, pp. 132–140.
2. Crespo A.C., Puchol R.Q., Goncalez L.P., Sanchez L.G., Gomez Perez C.R., Cedre E.D., Mendez T.O., Pozol J.A. Obtaining a submerged arc welding flux of the MnO – SiO2 – CaO – Al2O3 – CaF2 system by fusion. Welding International. 2007, vol. 21, no. 7, pp. 502–511.
3. Crespo A.C., Puchol R.Q., González L.P., Gómez Pérez C.R., Castellanos G., Díaz Cedré E., Ortíz T. Study of the relationship between the composition of a fused flux and its structure and properties. Welding International. 2009, vol. 23, no. 2, pp. 120–131.
4. Golovko V.V., Potapov N.N. Special features of agglomerated (ceramic) fluxes in welding. Welding International. 2011, vol. 25, no. 11, pp. 889–893.
5. Volobuev Yu.S., Volobuev O.S., Parkhomenko A.G., Dobrozhe-la E.I., Klimenchuk O.S. Using a new general-purpose ceramic flux SFM-101 in welding of beams. Welding International. 2012, vol. 26, no. 8, pp. 649–653.
6. Volobuev Yu.S., Surkov A.V., Volobuev O.S., Kipiani P.N., Shes-tov D.V., Pavlov N.V., Savchenko A.I. The development and properties of a new ceramic flux used for reconditioning rolling stock components. Welding International. 2010, vol. 24, no. 4, pp. 298–300.
7. Potapov N.N., Kurlanov S.A. A criterion for evaluating the activity of fused welding fluxes. Welding International. 1987, vol. 1, no. 10, pp. 951–954.
8. Babushkin P.L., Persits V.Yu. Determination of hydrogen in the form of moisture in basic electrode coatings and fluxing materials in metallurgical production. Welding International. 1991, vol. 5, no. 9, pp. 741–742.
9. Pavlov I.V., Oleinichenko K.A. Regulating generation of CO by varying the composition of ceramic fluxes. Welding International. 1995, vol. 9, no. 4, pp. 329–332.
10. Chigarev V.V., Kosenko A.A. Regulating the silicon‐reduction process in welding under ceramic fluxes with an active deoxi dising agent. Welding International. 1994, vol. 8, no. 10, pp. 808–809.
11. Kurlanov S.A., Potapov N.N,. Natapov O.B. Relationship of physical and welding technological properties of fluxes for welding low alloy steels. Welding International. 1993, vol. 7, no. 1, pp. 65–68.
12. Bublik O.V., Chamov S.V. Advantages and shortcomings of ceramic (agglomerated) fluxes in comparison with fused fluxes used for the same applications. Welding International. 2010, vol. 24, no. 9, pp. 730–733.
13. Gur’ev S.V., Pletnev Yu.M., Murav’ev I.I. Investigation of the properties of welded joints produced by welding in a gas mixture and under a flux. Welding International. 2012, vol. 26, no. 8, pp. 646–648.
14. Parshin S.G. Using ultrafine particles of activating fluxes for increasing the productivity of MIG/MAG welding of steels. Welding International. 2012, vol. 26, no. 10, pp. 800–804.
15. Cruz-Crespo A., Quintana-Puchol R., Perdomo González L., Gómez-Pérez C.R., García-Sánchez L.L., Ejiménez-Vielsa G., Cores-Sánchez A. Carbothermic reduction of pirolusite to obtain carbon-bearing ferromanganese and slag suited to the development of welding materials. Welding International. 2005, vol. 19, no. 7, pp. 544–551.
16. Barmin L.N. et al. Effect of the composition of flux and welding wire on the properties of deposited metal of 05N4MYu type. Welding International. 1989, vol. 3, no. 2, pp. 109–111.
17. Kazakov Yu.V., Koryagin K.B., Potekhin V.P. Effect of activating fluxes on penetration in welding steels thicker than 8 mm. Welding International. 1991, vol. 5, no. 3, pp. 202–205.
18. Potapov N.N., Feklistov S.I., Volobuev Yu.S., Potekhin V.P. A method of selecting fused fluxes in welding pearlitic–ferritic steels. Welding International. 2009, vol. 23, no. 10, pp. 800–803.
19. Kozyrev N.A., Kryukov R.E., Kozyreva O.E., Lipatova U.I., Filonov A.V. Production of welding fluxes using waste slag formed in silicomanganese smelting. IOP Conference Series: Materials Science and Engineering. 2016, vol. 125, pp. 1–6.
20. Kozyrev N.A., Kryukov R.E., Lipatova U.I., Kozyreva O.E. On the use of slag from silicomanganese production for welding flux manufacturing. IOP Conf. Series: Materials Science and Engineering. 2016, vol. 150, pp. 1–9.
21. Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva O.A. Flyus dlya svarki [Welding flux]. Patent no. 2576717 RF. Byulleten’ izobretenii. 2016, no. 7. (In Russ.).
22. Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva O.A. Flyus dlya mekhanizirovannoi svarki i naplavki stalei [Flux for mechanical welding and facing of steels]. Patent no. 2579412 RF. Byulleten’ izobretenii. 2016, no. 10. (In Russ.).
Review
For citations:
Kryukov R.E., Kozyrev N.A., Prokhorenko O.D., Bashchenko L.P., Kibko N.V. METALLOGRAPHIC INVESTIGATIONS OF QUALITY OF WELDING SEAM OBTAINED BY SILICOMANGANESE SLAG FLUX WELDING. Izvestiya. Ferrous Metallurgy. 2017;60(7):531-537. (In Russ.) https://doi.org/10.17073/0368-0797-2017-7-531-537