Preview

Izvestiya. Ferrous Metallurgy

Advanced search

METALLOGRAPHIC INVESTIGATIONS OF QUALITY OF WELDING SEAM OBTAINED BY SILICOMANGANESE SLAG FLUX WELDING

https://doi.org/10.17073/0368-0797-2017-7-531-537

Abstract

Results of the study of metallurgical wastes application as components of welding fluxes are given. Composition and production technology of a new welding flux using silicomanganese slag as a component have been developed. Results of this slag application in manufacture of welding fluxes are presented. In order to study quality of welded seams, metallographic analysis was carried out and the grain size and level of nonmetallic inclusions contamination were determined. Metallographic studies were made with the help of OLYMPUS GX-51 optical microscope in magnification range of 100  –  1000  times. Influence of fractional composition of fluxes on their welding technological properties was studied. Optimal fraction was selected, ensuring low level of contamination of metal of welding seam with non-metallic oxide inclusions, in particular non-deformable silicates and oxides. It has been established that application of welding flux fine fraction in an amount of 30  –  40  % ensures reduction in degree of welding seam metal contamination with non-metallic inclusions. The metallographic analysis of welding seam metal shows that introduction of fine fraction does not affect its structural components. Welding seam metal has a ferrite-pearlite structure; ferrite is presented in form of non-uniform grains elongated in the direction of heat extraction. It was determined that the optimum content of a fraction less than 0.45  mm in the flux is 30  –  40  %. To raise technical and economic indicators, it is suggested to mix fine fraction with liquid glass. Application of ceramic flux made of silicomanganese slag dust of 0.45  mm fraction, bonded by liquid glass, provides reduction in the welding seam metal level of contamination with nonmetallic inclusions. At the same time, increase in its volume from 15 to 40  % does not significantly affect the level of welding seam metal contamination with nonmetallic inclusions and its microstructure. Microstructure of welding seam metal is represented by perlite and ferrite. It was found that fine fraction introduction with use of liquid glass in an amount of 15  –  20  % is optimal in production of ceramic flux.

About the Authors

R. E. Kryukov
Siberian State Industrial University
Russian Federation
Cand. Sci. (Eng.), Senior Lecturer of the Chair “Materials, Foundry and Welding Production”


N. A. Kozyrev
Siberian State Industrial University
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Materials, Foundry and Welding Production”


O. D. Prokhorenko
Siberian State Industrial University
Russian Federation
Cand. Sci. (Eng.), Leading Methodologist


L. P. Bashchenko
Siberian State Industrial University
Russian Federation
Cand. Sci. (Eng.), Deputy Executive Secretary of the journal "Izvestiya VUZov. Ferrous metallurgy"


N. V. Kibko
Siberian State Industrial University
Russian Federation
Cand. Sci. (Eng.), Senior Engineer


References

1. Puchol  R.Q.,  Blanco  J.R.,  Gonzalez  L.P.,  Hernández  G.C.,  Gómez  Pérez C.R. The influence of the air occluded in the deposition  layer  of  flux  during  automatic  welding:  a  technological  aspect  to  consider  in  the  quality  of  the  bead.  Welding International.  2009,  vol.  23, no. 2, pp. 132–140.

2. Crespo A.C.,  Puchol  R.Q.,  Goncalez  L.P.,  Sanchez  L.G.,  Gomez Perez  C.R.,  Cedre  E.D.,  Mendez  T.O.,  Pozol  J.A.  Obtaining  a  submerged arc welding flux of the MnO – SiO2 – CaO – Al2O3 – CaF2 system by fusion. Welding International. 2007, vol. 21, no. 7,  pp.  502–511.

3. Crespo A.C., Puchol R.Q., González L.P., Gómez Pérez C.R., Castellanos G., Díaz Cedré E., Ortíz T. Study of the relationship between the composition of a fused flux and its structure and properties. Welding International. 2009, vol. 23, no. 2, pp. 120–131.

4. Golovko  V.V.,  Potapov  N.N.  Special  features  of  agglomerated  (ceramic) fluxes in welding. Welding International. 2011, vol. 25,  no.  11, pp. 889–893.

5. Volobuev  Yu.S.,  Volobuev  O.S.,  Parkhomenko  A.G.,  Dobrozhe-la  E.I.,  Klimenchuk  O.S.  Using  a  new  general-purpose  ceramic  flux SFM-101 in welding of beams. Welding International. 2012,  vol.  26, no. 8, pp. 649–653.

6. Volobuev Yu.S., Surkov A.V., Volobuev O.S., Kipiani P.N., Shes-tov  D.V.,  Pavlov  N.V.,  Savchenko  A.I.  The  development  and  properties of a new ceramic flux used for reconditioning rolling  stock  components.  Welding International.  2010,  vol.  24,  no.  4,  pp.  298–300.

7. Potapov N.N., Kurlanov S.A. A criterion for evaluating the activity  of fused welding fluxes. Welding International. 1987, vol. 1, no. 10,  pp. 951–954.

8. Babushkin  P.L.,  Persits  V.Yu.  Determination  of  hydrogen  in  the  form of moisture in basic electrode coatings and fluxing materials in  metallurgical production. Welding International. 1991, vol. 5, no.  9,  pp. 741–742.

9. Pavlov  I.V.,  Oleinichenko  K.A.  Regulating  generation  of  CO  by  varying the composition of ceramic fluxes. Welding International.  1995, vol. 9, no. 4, pp. 329–332.

10. Chigarev  V.V.,  Kosenko  A.A.  Regulating  the  silicon‐reduction  process  in  welding  under  ceramic  fluxes  with  an  active  deoxi dising  agent.  Welding International.  1994,  vol.  8,  no.  10,  pp.  808–809.

11. Kurlanov  S.A.,  Potapov  N.N,.  Natapov  O.B.  Relationship  of  physical and welding technological properties of fluxes for welding low alloy steels. Welding International. 1993, vol. 7, no. 1,  pp. 65–68. 

12. Bublik O.V., Chamov S.V. Advantages and shortcomings of ceramic (agglomerated) fluxes in comparison with fused fluxes used for  the same applications. Welding International. 2010, vol. 24, no. 9,  pp.  730–733.

13. Gur’ev  S.V.,  Pletnev  Yu.M.,  Murav’ev  I.I.  Investigation  of  the  properties  of  welded  joints  produced  by  welding  in  a  gas  mixture and under a flux. Welding International. 2012, vol. 26, no. 8,  pp.  646–648.

14. Parshin  S.G.  Using  ultrafine  particles  of  activating  fluxes  for  increasing the productivity of MIG/MAG welding of steels. Welding International. 2012, vol. 26, no. 10, pp. 800–804.

15. Cruz-Crespo  A.,  Quintana-Puchol  R.,  Perdomo  González  L.,  Gómez-Pérez  C.R.,  García-Sánchez  L.L.,  Ejiménez-Vielsa  G.,  Cores-Sánchez A.  Carbothermic  reduction  of  pirolusite  to  obtain  carbon-bearing ferromanganese and slag suited to the development  of welding materials. Welding International. 2005, vol. 19, no.  7,  pp.  544–551.

16. Barmin L.N. et al. Effect of the composition of flux and welding  wire on the properties of deposited metal of 05N4MYu type. Welding International. 1989, vol. 3, no. 2, pp. 109–111.

17. Kazakov Yu.V., Koryagin K.B., Potekhin V.P. Effect of activating  fluxes on penetration in welding steels thicker than 8 mm. Welding International. 1991, vol. 5, no. 3, pp. 202–205. 

18. Potapov N.N., Feklistov S.I., Volobuev Yu.S., Potekhin V.P. A method of selecting fused fluxes in welding pearlitic–ferritic steels. Welding International. 2009, vol. 23, no. 10, pp. 800–803.

19. Kozyrev N.A., Kryukov R.E., Kozyreva O.E., Lipatova U.I., Filonov A.V. Production of welding fluxes using waste slag formed in  silicomanganese  smelting.  IOP Conference Series: Materials Science and Engineering. 2016, vol. 125, pp. 1–6.

20. Kozyrev  N.A.,  Kryukov  R.E.,  Lipatova  U.I.,  Kozyreva  O.E.  On  the use of slag from silicomanganese production for welding flux  manufacturing. IOP Conf. Series: Materials Science and Engineering. 2016, vol. 150, pp. 1–9. 

21. Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva O.A. Flyus dlya svarki [Welding flux]. Patent no. 2576717 RF.  Byulleten’ izobretenii. 2016, no. 7. (In Russ.). 

22. Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva  O.A.  Flyus dlya mekhanizirovannoi svarki i naplavki stalei [Flux for mechanical welding and facing of steels]. Patent no.  2579412 RF. Byulleten’ izobretenii. 2016, no. 10. (In Russ.).


Review

For citations:


Kryukov R.E., Kozyrev N.A., Prokhorenko O.D., Bashchenko L.P., Kibko N.V. METALLOGRAPHIC INVESTIGATIONS OF QUALITY OF WELDING SEAM OBTAINED BY SILICOMANGANESE SLAG FLUX WELDING. Izvestiya. Ferrous Metallurgy. 2017;60(7):531-537. (In Russ.) https://doi.org/10.17073/0368-0797-2017-7-531-537

Views: 841


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)