Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF PARAMETERS OF THE CALIBRATION PROCESS ON BENDING STIFFNESS OF STEEL ROD

https://doi.org/10.17073/0368-0797-2017-7-512-515

Abstract

The calibrated metal is efficient material for manufacture of details on automatic machines and automatic transfer lines, and also for production of smooth lengthy shafts and axes. Such details are not technological as during the machining and operation they change a form in a type of a curvature. Deformation comes at action of centrifugal forces even from sole weight of details. New constructional materials allow to create rather strong details with the reduced transverse section, but a flexural rigidity of such details significantly decreases. It is very difficult to increase flexural rigidity of actual details. In practice, constructive solutions that are associated with material costs are usually used. In this work the possibility of increase in a flexural rigidity of the cylindrical calibrated bars is considered due to the formation of technological residual stresses. The problem of their use is that residual stresses always exist of two types – stretching and squeezing. If external stresses of stretching increase rigidity of details, then pressure loads reduce it. Therefore, the main task of the work was to find such nature of distribution of residual stresses which would provide increase in a flexural rigidity of the details made of calibrated metal. The geometrical model of a bar consisting of thin-walled tubes of 0.2 mm thick was accepted at model operation of residual stresses. Each tube was loaded with the stretching or squeezing tension which corresponded to value of the experimental definition. At model operation and calculation two schemes of loading were used at which in the surface layers either residual stresses of compression or stretching are formed. Experimental calculation methods established influence of key parameters of calibration on a flexural rigidity of metal. The possibility of increase in a flexural rigidity of the calibrated bars is revealed almost twice when cogging from 5 to 34 %. For 20 % it is possible to increase rigidity at increase in length of the calibrating zone of the tool. The influence of the angle of the working cone of the machine is insignificant (about 10%), and for increasing the rigidity the operating angle of the tool must be reduced.

About the Authors

S. A. Zaides
Irkutsk National Research Technical University
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Engineering Technology and Materials”


Nguen Van Khuan
Irkutsk National Research Technical University
Russian Federation
Postgraduate


References

1. Alfutov  N.A.  Osnovy rascheta na ustoichivost’ uprugikh sistem [Basics  of  calculating  the  stability  of  elastic  systems].  Moscow:  Mashinostroenie, 1978, 312 p. (In Russ.).

2. Balter  M.A.  Uprochnenie detalei mashin [Hardening  of  machine  parts]. Moscow: Mashinostroenie, 1978, 184 p. (In Russ.).

3. Gerasimov V.Ya. Determination of uniform hardening of the calibrated metal by sinking strain of high cylinders. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy.  1981,  no.  6, pp. 154. (In Russ.).

4. Gerasimov  V.Ya.,  Kopyrin  V.I.  Change  in  the  stiffness  of  the  cold-rolled  steel  by  its  bending.  Stal’,  1998,  no.  8,  pp.  47–48.  (In Russ.).

5. Zaides  S.A.  Ostatochnye napryazheniya i kachestvo kalibrovannogo metalla  [Residual  stresses  and  quality  of  calibrated  metal].  Irkutsk: IGU, 1992, 200 p. (In Russ.).

6. Zaides  S.A.  Okhvatyvayushchee poverkhnostnoe plasticheskoe deformirovanie [Covering surface plastic deformation]. Irkutsk: Ir-GTU, 2001, 309 p. (In Russ.).

7. Lur’e A.I. Teoriya uprugosti [Theory of elasticity]. Moscow: Nauka, 1970, 256 p. (In Russ.).

8. Orlov  P.I.  Osnovy konstruirovaniya: Spravochno-metodicheskoe posobie [Basics of construction: Reference and methodical manual].  Moscow: Mashinostroenie, 1998, 560 p. (In Russ.).

9. Pisarenko G.S., Yakovlev A.P., Matveev V.V. Spravochnik po so-protivleniyu materialov [Handbook on the resistance of materials].  Kiev: Naukova dumka, 1988, 736 p.

10. Chuvil’deev V.N., Viryasova N.N. Deformatsiya i razrushenie konstruktsionnykh materialov: problemy stareniya i resursa. Uchebnoe posobie [Deformation  and  destruction  of  structural  materials:  the  problems  of  aging  and  resource.  Tutorial].  Chuvil’deev  V.N.  ed.  Nizhny Novgorod: NNGU, 2010, 67 p. (In Russ.).

11. Dimarogonas A.D. Dynamic instability of shafts during machining.  Journal of Sound and Vibration. 1986, vol. 108, no. 2, pp. 181–189.

12. Kloos  K.H.  Eigenspannungen,  Definition  und  Entstehungsursachen. Mat.-wiss. u. Werkstofftech. 1979, vol. 10, no. 9, pp. 293–302. 

13. Kramer I.R., Bonis L.J., Bruyn P.L., Duga J.J. Effect of surfaces  on mechanical behavior of metals. Fundamental Phenomena in the Materials Sciences Springer US. 1995, pp. 171–193. 

14. Latanision R.M., Sedriks A.J., Westwood A. Surface-sensitive mechanical  behavior  of  metals.  In:  Struct. and Properties of Metals Surfaces. 1973, pp. 500–538.

15. Norstrem L.A., Iachasson D. Surface yield strength and flow stress  in high-strength martensitic steel. Scfnd. J. Mat. 1983, vol. 12, no.  1,  pp. 37–39.

16. Franco  Rustichelli,  Jacek  J.  Skrzypek.  Innovative technological materials. Structural properties by neutron scattering, Synchrotron radiation and modeling. London - New York: Springer, 2010, 280 p.

17. Totten G., Howes M., Inoue T. Handbook of Residual Stress and Deformation of Steel.  USA:  ASM  International,  Materials  Park,  Ohio, 2002, 500 p.

18. Viktor Hauk. Structural and residual stress analysis by nondestructive methods: evaluation, application, assessment.  Amsterdam:  Elsevier Science B.V. 1997, 640 p.

19. Zaides S.A., Nguyen V.H. Improving the flexural rigidity of cold-finished steel. Steel in Translation. 2016, vol. 46, no.7, pp. 505–509.

20. Zaides S.A., Nguyen V.H. Influence of Surface Plastic Deformation  on the Flexural Rigidity of Shafts. Russian Engineering Research.  2016, vol. 36, no. 12, pp. 1008–1011.


Review

For citations:


Zaides S.A., Van Khuan N. INFLUENCE OF PARAMETERS OF THE CALIBRATION PROCESS ON BENDING STIFFNESS OF STEEL ROD. Izvestiya. Ferrous Metallurgy. 2017;60(7):512-515. (In Russ.) https://doi.org/10.17073/0368-0797-2017-7-512-515

Views: 727


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)