Preview

Izvestiya. Ferrous Metallurgy

Advanced search

OPTIMIZATION OF MODIFYING MATERIAL DISTRIBUTION DURING LASER PROCESSING OF THE METAL SURFACE

https://doi.org/10.17073/0368-0797-2017-7-505-511

Abstract

The improvement of operational properties of metal parts during the laser surface treatment can be obtained by modifying the melt with the prepared nano-sized particles of refractory compounds (carbides, nitrides, and others.). It allowsthe number of crystallization centersto be increased, the structure to be grinded and the uniformity of the solidified metal to be raised. It is known that thermocapillary convection promotes the homogeneous distribution of materials penetrating into the molten metal. It is also known that the presence of surface-active substances in the melt influences the character of convection. There is evidence that the structure of flow in the melt depends on the amount of surface-active substances in the metal. Therefore, the studies were conducted to obtain data on the relationship of characteristics of metal processing by laser and the uniformity degree of modifying additives distribution. Using the numerical modeling the effects of characteristics of pulsing laser action on allocation of modifying particles are estimated at the presence of surface-active substance in metal. With the help of mathematical proposed model the following non-stationary processes are considered: heating and melting of the metal, heat transfer in the melt, fluid motion, nucleation and growth of the solid phase after termination of the pulse. During the numerical realization of the model the heat conduction equation was firstly solved. Upon appearance of molten metal the boundary of the liquid phase was determined. Further the coupled equations of convective heat transfer and motion of an incompressible fluid were solved. After the laser pulse termination, the calculations are continued until the complete solidification of the substrate material is achieved. It was supposed that modifying nano-sized particles under the influence of convective flows penetrate into depth of a melt from its surface. The movement and distribution of particles in a fluid was modeled using markers. The movement of the markers was determined by the local velocity of the melt. According to the results of numerical experiments, the effect of the parameters of pulsed laser action on the nature of the flow and distribution of the particles in the melt were determined. Optimum parametersfor the melting of the metalsubstrate by a laser pulse are proposed for various surface-active substances concentrations.

 

About the Authors

V. N. Popov
Institute of Theoretical and Applied Mechanics named after S. Christianovich
Russian Federation
Dr. Sci. (Phys.-Math.), Chief Researcher


A. N. Cherepanov
Institute of Theoretical and Applied Mechanics named after S. Christianovich
Russian Federation
Dr. Sci. (Phys.-Math.), Professor, Chief Researcher


References

1. Maiorov V.S. Laser hardening of metals. In: Lazernye tekhnologii obrabotki materialov: sovremennye problemy fundamental’nykh issledovanii i prikladnykh razrabotok [Laser  technologies  of  material  processing:  modern  problems  of  fundamental  research  and  applied  developments].  Panchenko  V.Ya.  ed.  Moscow:  Fizmatlit,  2009, pp. 439–469. (In Russ.). 

2. Vedenov A.A., Gladush G.G. Fizicheskie protsessy pri lazernoi ob-rabotke materialov [Physical processes in the laser treatment of materials]. Moscow: Energoatomizdat, 1985, 208 p. (In Russ.).

3. He X., Fuerschbach P.W., DebRoy T. Heat transfer and fluid flow  during laser spot welding of 304 stainless steel. J. Phys. D: Appl.

4. Phys. 2003, vol. 36, pp. 1388–1398.

5. Montealegre M.A., Castro G., Rey P., Arias J.L., Vázquez P., González M. Surface treatments by laser technology. Contemporary Materials. 2010, vol. 1 (1), pp. 19–30. 

6. Saburov  V.P.,  Cherepanov A.N.,  Zhukov  M.F.  etc.  Plazmokhimicheskii sintez ul'tradispersnykh poroshkov i ikh primenenie dlya modifitsirovaniya metallov i splavov [Plasma-chemical  synthesis of ultradisperse powders and their application for the modification  of metals and alloys]. Novosibirsk: Nauka, Sibirskaya izdatel'skaya  firma RAN, 1995, 344 p. (In Russ.).

7. Zuev A.L.,  Kostarev  K.G.  Certain  peculiarities  of  solutocapillary  convection. Physics-Uspekhi. 2008, vol. 51, no. 10, pp. 1027–1045.

8. Gladush G.G., Likhanskii V.V., Loboiko A.I. Influence of surfactants  on heat and mass transfer in melting of the surface of a substance by  a laser pulse. Quantum Electronics. 1997, vol. 24, no. 3, pp. 268–272. 

9. Ribic B., Tsukamoto S., Rai R., DebRoy T. Role of surface active  elements during keyhole mode laser welding. Journal of Physics D: Applied Physics. 2011, vol. 44 (48), article 485203.

10. Seyhan I., Egry I. The surface tension of undercooled binary iron  and nickel alloys and the effect of oxygen on the surface tension of  Fe and Ni. International Journal of Thermophysics. 1999, vol. 20,  no. 4, pp. 1017–1028.

11. Ehlen G., Ludwig A., Sahm P.R. Simulation of time-dependent pool  shape  during  laser  spot  welding:  transient  effects.  Metall. Mater. Trans. A. 2003, vol. 34A, pp. 2947–2961.

12. Popov V.N., Tsivinskii M.Yu., Tsivinskaya Yu.S. Numerical evaluation  of the contribution of a surface-active substance in melt to convective  mass transfer caused by pulsed laser action on metal. Mathematical Models and Computer Simulations. 2012, vol. 4, no.  5, pp.  527–533.

13. Popov V.N., Cherepanov A.N., Drozdov V.O. The modeling of convective heat and mass transfer in laser metal processing with the use  of  modifier  materials.  Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2013, no. 12, pp. 3–7. (In Russ.).

14. Sahoo  P.,  DebRoy  T.,  McNallan  M.J.  Surface  tension  of  binary  metal-surface  active  solute  systems  under  conditions  relevant  to  welding metallurgy. Metall. Trans. B. 1988, vol. 19B, pp. 483–491.

15. Budak B.M., Solov’eva E.N., Uspenskii A.B. A difference method  with smoothing of the coefficients for the solution of Stefan’s tasks.  Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki.  1965,  vol. 5, no. 5, pp. 828–840. (In Russ.).

16. Höche D., Müller S., Rapin G. etc. Marangoni convection during  free  electron  laser  nitriding  of  titanium.  Metall. Mater. Trans. B.  2009, vol. 40, no. 4, pp. 497–507.

17. Balandin G.F. Osnovy teorii formirovaniya slitka [Basics of the theory  of ingot formation]. Moscow: Mashinostroenie, 1979, 335  p. (In Russ.).

18. Kolmogorov  A.N.  To  the  statistical  theory  of  metals  crystallization.  Izvestiya AN SSSR. Ser. matematicheskaya.  1937,  no.  3,   pp.  355–359. (In Russ.).

19. Harlow F.H., Welch J.E. Numerical calculation of time-depend viscous incompressible flow of fluid with free surface. Phys. Fluids.  1965, vol. 8, pp. 2182–2189.

20. Patankar S.V., Spalding D.B. A calculation procedure for heat, mass  and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Trans. 1972, vol. 15, pp. 1787–1806. 

21. Chorin A.J. A numerical method for solving incompressible viscous  flow problems. J. Comput. Phys. 1967, vol. 2, pp. 12–26.


Review

For citations:


Popov V.N., Cherepanov A.N. OPTIMIZATION OF MODIFYING MATERIAL DISTRIBUTION DURING LASER PROCESSING OF THE METAL SURFACE. Izvestiya. Ferrous Metallurgy. 2017;60(7):505-511. (In Russ.) https://doi.org/10.17073/0368-0797-2017-7-505-511

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)