STRENGTH PROPERTIES EVALUATION OF MATERIALS OF TECHNOLOGICAL MACHINES ELEMENTS BASED ON THE SYNERGETICALLY ORGANIZED SIGNALS OF ACOUSTIC EMISSION
https://doi.org/10.17073/0368-0797-2017-6-443-450
Abstract
About the Authors
A. N. Savel’evRussian Federation
Cand. Sci. (Eng.), Senior Lecturer of the Chair of Mechanics and Machine Engineering
E. A. Savel’eva
Russian Federation
Candidates for a degree of Cand. Sci. (Eng.) of the Chair of Mechanics and Machine Engineering
N. A. Lokteva
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Strength of Materials and Strength Dynamics of Machines
References
1. Fridman Ya.B. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. Moscow: Oborongiz, 1952, 555 p. (In Russ.).
2. Shkol’nik L.M. Metodiki ustalostnykh ispytanii [Fatigue test methods]. Moscow: Metallurgiya, 1978, 304 p. (In Russ.).
3. Markovets M.P. Opredelenie mekhanicheskikh svoistv metallov po tverdosti [Determination of the mechanical hardness properties of metals]. Moscow: Mashinostroenie, 1979, 191 p. (In Russ.).
4. Gavrilov D.A. Correlation relations between mechanical characteristics under static and cyclic loading conditions for structural steels and alloys. Problemy prochnosti. 1979, no. 5, рр. 59–65. (In Russ.).
5. Prot E.M. L’essai des fatigue Sous Charse Progressive. Une nouvelle technique d’essai des materiaux. Rev. Metallurgia. 1948, vol. 45, no. 12, pp. 481.
6. Enomoto N.A. A method for determining the fatigue limit of metal by means of stepwise load increase test. Proc. ASTM. 1959, vol. 59, pp. 263–271.
7. Gur’ev A.V., Misharev G.M. Features of initial stage process of plastic deformation under static and cyclic loads of carbon steel. In: Metallovedenie i prochnost’ materialov. T. 3. Trudy volgogradskogo politekhnicheskogo instituta [Metallurgy and strength of materials. Vol. 3. Proceedings of Volgograd Polytechnic Institute]. Volgograd: VPI, 1971, p. 56–64. (In Russ.).
8. Ivanova V.S., Balankin A.S., Bunin I.Zh., Okhsotoev A.A. Sinergetika i fraktaly v materialovedenii [Synergy and fractals in material science]. Moscow: Nauka, 1995, 280 p. (In Russ.).
9. Koneva N.A., Lychagin D.V., Zhukovskii S.P., Kozlov E.V. Evolution of the dislocation structure and stages of plastic flow of a polycrystalline iron-nickel alloy. Physics of Metals and Metallography. 1985, vol. 60, no. 1, рр. 157–166.
10. Locati L. Le prove di fatica come ausilio alla progettazione ed alla produzione. Metallurgia Italiana. 1955, vol. 47, no. 9, pp. 301–308.
11. Troshchenko V.T. Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii [Deformation and fracture of metals under multicyclic loading]. Kiev: Naukova dumka, 1981, 344 p. (In Russ.).
12. Cottrell A.H. Dislocations and plastic flow in crystals. New York: Oxford Univ. Press., 1953.
13. Hirth D., Lothe I. Theory of dislocations. Oxford. 1972. (Russ.ed.: Hirth D., Lothe I. Teoriya dislokatsii. Moscow: Atomizdat, 1972, 600 p.).
14. Bolotin Yu.I., Greshnikov V.A., Gusakov A.A., Drobot Yu.B. Using the emission of stress waves for non-destructive material control. Defektoskopiya. 1971, no. 6, pp. 5–25. (In Russ.).
15. Greshnikov V.A., Drobot Yu.V. Akusticheskaya emissiya. Primenenie dlya ispytanii materialov i izdelii [Acoustic emission. Application for testing of materials and products]. Moscow: Izd-vo standartov, 1976, 272 p. (In Russ.).
16. Natsik V.D. Radiation of sound by a dislocation that emerges on the surface of a crystal. Pis’ma v ZhETF. 1968, Vol. 8, Part 6, pp. 324–328. (In Russ.).
17. Frederick I.R. Dislocations motion as a source of acoustic emission. In.: Acoustic Emission. ASTM STP-505. 1972, pp. 129–139.
18. Pollock A.A. Stress-wave emission a new tool for industry. Ultrasonics. 1969, vol. 6(2). 32, pp. 88–92.
19. Gillis P.P. Dislocation motions and acoustic emission. In: Acoustic Emission. ASTM STP-505. 1972, pp. 20–29.
20. Boiko V.S, Garber R.I., Krivenko L.F. Sound emission during the annihilation of a dislocation cluster. Fizika tverdogo tela. 1974, vol. 16, no. 4, pp. 1233–1235. (In Russ.).
21. Haken H., Synergetic. An Introduction. Nonequilibrium phase transitions and self-organization in Physics, Chemistry and Biology. 2nd Ed., Springer-Verlag Berlin – Heidelberg New York, 1978.
22. Nazarova G.V., Rybyanets V.A. Kvantovye usiliteli i generatory: uchebn. posobie [Quantum amplifiers and generators: Learners guide]. Novokuznetsk: SibGGMA, 1997, 60 p. (In Russ.).
23. Savel’eva E.A., Savel’ev A.N. Sposob registratsii signalov akusticheskoi emissii [Method for recording the acoustic emission signals]. Patent no. 2555506 RF. Byulleten’ izobretenii. 2014, no. 19. (In Russ.).
24. Mecke K., Blochwitz G., Kremling U. The development of the dislocation structures during the fatigue process of F.C.C. single crystals. Cryst. Res. And Technol. 1982, vol. 17, no. 12, pp. 1557–1570.
25. Koneva N.A. Self-organization and phase transition in dislocation structure. In: Proc. of 9th ICSMA, Israel, Haifa 1991. Fruid Publ. Company LTD. London, 1991, pp. 157–164.
26. Winter A.T., Pederson O.B., Rasmussen K.V. Dislocation microstructures in fatigue copper polycrystals. Acta met. 1981, vol. 29, pp. 735–748.
27. Winter A.T. Dislocation structure in the interior of fatigued copper polycrystal. Acta Met. 1980, vol. 28, pp. 963–964.
Review
For citations:
Savel’ev A.N., Savel’eva E.A., Lokteva N.A. STRENGTH PROPERTIES EVALUATION OF MATERIALS OF TECHNOLOGICAL MACHINES ELEMENTS BASED ON THE SYNERGETICALLY ORGANIZED SIGNALS OF ACOUSTIC EMISSION. Izvestiya. Ferrous Metallurgy. 2017;60(6):443-450. (In Russ.) https://doi.org/10.17073/0368-0797-2017-6-443-450