MATHEMATICAL MODEL OF BURNING PROCESS OF COAL-ORE PELLETS ON CONVEYOR MACHINE
https://doi.org/10.17073/0368-0797-2017-4-329-335
Abstract
Development of mathematical models of coal-ore pellets burning process was executed on the conveyor machine. The problems of heat transfer between gas and material in the transversally blown dense laye r are considered. The description is given for the following aspects: the phenomena of drying and cooling of materials (inclu ding by air-and-water mixture), oxidation processes of ore constituents of pellets, dissociation of limestone and burning of fuel constituents of material. Equalizations of the engineering mathematical models of iron oxides recovery and burning of fuel granules and of heating of machine’s fi re grate (carts) are resulted. When calculating the development of physicochemical transformations in the volume of the pellet, it was assumed that any chemical reaction from the surface of the granules of a particular component proceeds over the entire inner and outer surfaces of the pellet, and the process potential (the diff erence in the concentration of gaseous reactant) is a function of the pellet’s radius, the diff usion coeffi cient of reagent in micropores of the pellet. At the same time, the response in the individual pellet is frontal, and the completion degree of the process can be expressed through the radii of unreacted pellet volumes. Among all physicochemical phenomena accompanying the process of calcination of coal-ore pellets, this mathematical model directly takes into account only the main ones, which are refl ected in the material balance and can be verifi ed experimentally. Finite-diff erence approximation of equations of the mathematical model together with the expressions for calculating the thermophysical characteristics of heat carriers, heat and mass transfer coeffi cients, thermochemical and kinetic constants, etc. have formed the basis of a numerical model of a conveyor burning machine that produces metallized pellets. The implementation of this model in the particular case is presented in the article.
About the Authors
V. S. ShvydkiiRussian Federation
Dr. Sci. (Eng.), Professor of the Сhair “Thermal Physics and Informatics in Metallurgy”
Yu. G. Yaroshenko
Russian Federation
Dr. Sci. (Eng.), Professor of the Сhair “Thermal Physics and Informatics in Metallurgy”
N. A. Spirin
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Сhair “Thermal Physics and Informatics in Metallurgy”
V. V. Lavrov
Russian Federation
Dr. Sci. (Eng.), Professor of the Сhair “Thermal Physics and Infor-matics in Metallurgy”
References
1. Kitaev B.I., Timofeev V.N., Bokovikov B.A. etc. Teplo- i massoobmen v plotnom sloe [Heat and mass transfer in the dense layer]. Moscow: Metallurgiya, 1972, 432 p. (In Russ.).
2. Babushkin N.M., Bratchikov S.G., Namyatov G.N. etc. Okhlazhdenie aglomerata i okatyshei [Cooling of agglomerate and pellets]. Moscow: Metallurgiya, 1975, 208 p. (In Russ.).
3. Kitaev B.I., Yaroshenko Yu.G., Sukhanov E.L. etc. Teplotekhnika domennogo protsessa [Heat engineering of blast furnace process]. Moscow: Metallurgiya, 1978, 248 p. (In Russ.).
4. Serrin James. Mathematical Principles of Classical Fluid Mechanics. Series: Encyclopedia of Physics. Berlin – Göttingen – Heidelberg: Springer-Verlag OHG, 1959. (Russ.ed.: Serrin J. Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti. Mos-cow: IL, 1963, 256 p.).
5. Slattery John S. Momentum, energy, and mass transfer in continua. New York: McGraw-Hill, 1971, 679 p. (Russ.ed.: Slattery J. S. Teoriya perenosa impul’sa, energii i massy v sploshnykh sredakh. Mos-cow: Energiya, 1978, 448 p.)
6. Ergan S. Fluid fl ow through packed columns. Chem. Eng. Prog. 1957, vol. 48, рр. 89–94.
7. Lykov A.V. Teoriya sushki [Theory of drying]. Moscow: Energiya, 1968, 471 p. (In Russ.).
8. Frank-Kamenetskii D.A. Diff uziya i teploperedacha v khimicheskoi kinetike [Diff usion and heat transfer in chemical kinetics]. Moscow: Nauka, 1987, 492 p. (In Russ.).
9. Timofeev V.N., Bokovikov B.A., Babushkin N.M Mathematical description of the phenomena of heat and mass transfer in the blast furnace. In: Teplotekhnika domennogo i aglomeratsionnogo protsessov. Sb. nauch. Trudov VNIIMT № 14 [Heat engineering of blast furnace and agglomeration processes. Coll. of sci. works of VNIIMT no. 14]. Moscow: Metallurgiya, 1966, pp. 5–37. (In Russ.).
10. Bokovikov B.A. Calculating methods for layer processes and metal-lization units and their development. In: Fizikokhimiya pryamogo polucheniya zheleza [Physicochemistry of direct iron production]. Moscow: Nauka, 1977, pp. 84–87. (In Russ.).
11. Bokovikov B.A., Povolotskii V.Yu., Gimmel’farb A.I., Nemenov A.M. Analysis of the mine recovery process using the mathematical model. In: Pryamoe poluchenie zheleza i poroshkovaya metallurgiya: Tematich. otrasl. sb. no. 1 [Direct iron production and powder metallurgy: Thematic industrial coll. no. 1]. Moscow: Metal lurgiya, 1974, pp. 107–113. (In Russ.).
12. Esin O.A., Gel’d P.V. Fizicheskaya khimiya pirometallurgicheskikh protsessov; ch.1 [Physical chemistry of pyrometallurgical processes; part 1]. Sverdlovsk: Metallurgizdat, 1962, 671 p. (In Russ.).
13. Rostovtsev S.T. Teoriya metallurgicheskikh protsessov [Theory of metallurgical processes]. Moscow: Metallurgizdat, 1956, 514 p. (In Russ.).
14. Szekely J., Evans J.W., Sohn H.Y. Solid – gas reactions. N.Y.: Academic Press, 1976, 400 p.
15. Yagi I., Szekely J. Mathematical formulation on iron oxide pellets in moving beds with nonuniform gas and solids fl ow. Trans. Iron and Steel Inst. Japan. 1977, no. 10, pp. 569–575.
16. Funghini A., Fontana P., Marchi G. De. In: The operation of the blast furnace: theory and practice. Arles: 1980, vol. 2, pp. B. 2.1–B. 2.6.
17. Takahashi Y., Takahashi R. In: Proc. VIII Joint Japan – USSR Symposium on Physical Chemistry of Metallurgical Processes. Tokyo: 1981, pp. 78–92.
18. Bogdandy L., Engell H.-J. Die Reduktion der Eisenerze. Duesseldorf: Springer Verlag, 1967, 539 p. (Russ.ed.: Bogdandy L., Engell H.-J. Vosstanovlenie zheleznykh rud. Moscow: Metallurgiya, 1971, 519 p.).
19. Patankar Suhas V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980. (Russ.ed.: Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow: Energoatomizdat, 1984, 152 p.).
20. Spirin N.A., Lavrov V.V., Rybolovlev V.Yu., Gileva L.Yu., Krasnobaev A.V., Shvydkii V.S., Onorin O.P., Shchipanov K.A., Burykin A.A. Matematicheskoe modelirovanie metallurgicheskikh protsessov v ASU TP [Mathematical modeling of metallurgical processes in the automated process control system]. Spirin N.A. ed. Ekaterinburg: OOO “UIPTs”, 2014, 558 p. (In Russ.).
Review
For citations:
Shvydkii V.S., Yaroshenko Yu.G., Spirin N.A., Lavrov V.V. MATHEMATICAL MODEL OF BURNING PROCESS OF COAL-ORE PELLETS ON CONVEYOR MACHINE. Izvestiya. Ferrous Metallurgy. 2017;60(4):328-335. (In Russ.) https://doi.org/10.17073/0368-0797-2017-4-329-335