Preview

Izvestiya. Ferrous Metallurgy

Advanced search

MATHEMATICAL MODELING OF THERMAL PROCESSES AT SURFACE TREATMENT OF METAL PRODUCTS WITH HIGHLY CONCENTRATED ENERGY FLOWS

https://doi.org/10.17073/0368-0797-2017-5-398-409

Abstract

The modeling tasks of thermal effect of power impulse action on a surface of the plate of VК10 (КS) alloy were considered and solved. As modeling tasks for homogeneous equations of parabolic and hyperbolic heat conductions, a wave equation in a cylindrical solid of final sizes with boundary conditions of III kind were chosen. The action of power impulse from an exterior radiant was modeled by sudden appearance of initial high temperature, which spreads on a plate body under the laws expressed by various heat conduction equations, on one of the surface ends of a cylinder. Approaches of temperature fields were received in the form of a series segment of functions from eigenvalues of tasks, gradients of fields were defined. Simultaneous presence in the equation of heat conductivity of private derivatives on time of the first and second usages (the hyperbolic equation), statement of the task for it with boundary conditions of III kind and the entry condition at a cylinder end surface provides two ways (modes) of the problem’s decision, both of diffusion type. For the value of the relaxation time of the heat flux of 10–11  s, the complete cooling of the cylindrical sample (tungsten carbide) in the first mode is minutes, in the second  –  10–10  s. It can be concluded that the modes for solving the problem for the hyperbolic heat equation do not correspond to the actual pattern of heat propagation. However, the linear combination of these modes as a solution of the problem preserves the possibility of obtaining a diffusion dynamics adequate to the actual process. Gradients of the temperature field in the solutions of the problems for the parabolic heat conduction equation and the wave equation are in the same order of values. The temperature field of the moving thermal wave for several of its first reflections in experimental samples should be taken into account when evaluating phase transformations and temperature stresses. The results of the theoretical analysis are compared with changes in the microstructure of the near-surface layer of a plate of alloy VK10 (KS), subjected to electric explosive loading by plasma of a titanium foil.

 

About the Authors

V. I. Bazaikin
Siberian State Industrial University, Novokuznetsk
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Applied Mathematics and Informatics


O. L. Bazaikina
Siberian State Industrial University, Novokuznetsk
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Applied Mathematics and Informatics


T. N. Oskolkova
Siberian State Industrial University, Novokuznetsk
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Metal Forming and Metal Science”. OJSC “EVRAZ ZSMK”


M. V. Temlyantsev
Siberian State Industrial University, Novokuznetsk
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Thermal Power and Ecology”, Vice-Rector for Research and Innovations


References

1. Yakushin V.L Surface hardening of carbon and low alloyed steels by  high-temperature pulsed plasma flows. Tekhnologiya mashinostroeniya. 2004, no. 5, pp. 38–43. (In Russ.).

2. Yakushin V.L., Aun Tkhurein Khein, Dzhumaev P.S. etc. Modification of structural and phase state of ferrite-martensitic steels by the  influence of a pulsed flow of the gas plasma. Perspektivnye mate-rialy. 2013, no. 5, pp. 5–14. (In Russ.).

3. Knyazeva A.G. , Pobol I.L., Gordienko A.I., Demidov V.N., Kryukova O.N., Oleschuk I.G. Simulation of thermophysical and physi-co-chemical processes occurring at coating formation in electron-beam  technologies  of  surface  modification  of  metallic  materials.  Physical Mesomechanics. 2007, vol. 10, no. 3-4, pp. 207–220.

4. Molotkov S.G., Bashchenko L.P., Budovskikh E.A. etc. Modeling  of heating the metal surface during electroexplosive alloying with  different shape of the heat pulse. IzvestiyaVUZov. Chernaya metal-lurgiya = Izvestiya. Ferrous Metallurgy. 2013, no. 6, pp. 44–46. (In  Russ.).

5. Lykov A.V. Teoriya teploprovodnosti: uchebnoe posobie [Heat conduction theory: tutorial]. Moscow: Vysshaya shkola, 1967, 993 p.  (In Russ.).

6. Cattaneo  C.  Sur  une  forme  de  l’équation  de  la  chaleur  éliminant  le  paradoxe  d’une  propagation  instantanée.  C. r. Acad. sci.  1958,  vol.  247, no. 4. pp. 431–433. (In Fr.) 

7. Lord H., Shulman Y. A generalized dynamical theory of thermoplasticity. J. Mech. Phys. Solids. 1967, vol. 15, pp. 299–309.

8. Chen P.J., Gurtin M.E., Willams W.O. A note on non-simple heat  conduction. Z. Angew. Math. Phys. 1968, Bd. 19, S. 969–970. 

9. Chen P.J., Gurtin M.E., Willams W.O. On the thermodynamics of  non-simple elastic materials with two temperatures. Z. Angew. Math. Phys. 1969, Bd. 20, S. 107–112. 

10. Warren W.E., Chen P.J. Wave propagation in two temperatures theory of thermoelasticity. Acta Mech. 1973, vol. 16, pp. 83–117. 

11. Tzou  D.Y.  A  unified  approach  for  heat  conduction  from  macro-  to  micro-scales.  Trans. ASME. J. Heat Transfer.  1995,  vol.  117,  pp.  8–16. 

12. Quintanilla R., Horgan C.O. Spatial behavior of solutions of the dual-phase-lag heat equation. Math. Methods Appl. Sci. 2005, vol.  25,  pp. 43–57.

13. Quintanilla  R.  A  well-posed  problem  for  the  three-dual-phase  lag  heat  conduction  theory.  J. Thermal Stresses.  2009,  vol.  32,  pp.  1270–1278. 

14. Kaminski  W.  Hyperbolic  heat  conduction  equation  for  materials  with a non-homoqeneous inner structure. Trans ASME Journal of Heat Transfer. 1990, vol. 112, p. 555. 

15. Tien C.L., Qiu T.Q. Heat transfer mechanism during short pulse laser heating of metals. Trans ASME Journal of Heat Transfer. 1993,  vol. 115, pp. 835–841. 

16. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki: uchebnoe posobie [Partial differential equations of mathematical physics: Tutorial]. Mos-cow: Vysshaya shkola, 1970, 707 p. (In Russ.).

17. D’yakonov  V.P.  Maple 10/11/12/13/14 v matematicheskikh raschetakh  [Maple  10/11/12/13/14  in  mathematical  calculations].  Moscow: DMK, 2011, 799 p. (In Russ.).

18. Oskolkova  T.N.,  Budovskikh  E.A.,  Goryushkin  V.F.  Features  of  structure  formation  of  the  surface  layer  at  electroexplosive alloying of a tungsten carbide hard alloy. Izvestiya VUZov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2012, no. 3, pp. 46–50. (In  Russ.).

19. Moses G.A., Duderstadt J.J. Improved treatment of electron thermal  conduction  in  plasma  hydrodynamics  calculations.  Phys. Fluids. 1977, vol. 20, no. 5, pp.762–770. 

20. Kudinov  V.A.,  Kartashov  E.M.,  Kalashnikov  V.V.  Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii: uchebnoe posobie [Analytical solution of heat  and  mass  transfer  tasks  and  thermal  elasticity  for  multilayer  structures: Tutorial]. Moscow: Vysshaya shkola, 2005, 429 p. (In Russ.).

21. Astashinskii V.V.  Numerical  calculation  of  the  dynamics  of  temperature fields that determine the phase composition of polycrystalline iron during its exposure to a compression plasma flow. Journal of Engineering Physics and Thermophysics.  2014,  vol.  87,  no.  4,  pp. 815–819.


Review

For citations:


Bazaikin V.I., Bazaikina O.L., Oskolkova T.N., Temlyantsev M.V. MATHEMATICAL MODELING OF THERMAL PROCESSES AT SURFACE TREATMENT OF METAL PRODUCTS WITH HIGHLY CONCENTRATED ENERGY FLOWS. Izvestiya. Ferrous Metallurgy. 2017;60(5):398-409. (In Russ.) https://doi.org/10.17073/0368-0797-2017-5-398-409

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)