Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 12 % CHROMIUM STEEL WITH UNSTABLE AUSTENITE

https://doi.org/10.17073/0368-0797-2017-5-374-379

Abstract

The structure and mechanical properties ofsteel 35Kh12G3MVFDR were investigated. It is shown that after normalization or quenching there is austenite to 35  vol.  % in the steel and according to this it refers to martensitic-austenitic class. During the thermal treatment (tempering, long-term temperature keeping or isothermal quenching) austenite transforms into martensite in time not exceeding 2  hours. Martensite in 35Kh12G3MVFDR steel has great thermal stability: the first signs of its transformation into sorbitic structure are observed after 25  hours at 640  °C isothermal hardening, and its complete decomposition occurs after 50  hours. The martensite decomposition is accompanied by a reduction in the characteristics of heat resistance and hardness. Aging of quenched and tempered 35Kh12G3MVFDR steel at temperatures of 670  –  720  °C leads to decrease in hardness from 61  –  65  HRA to 55  –  60  HRA in time of 1600  –  3200  hours, the yield stress at 20  °C decreases from 1350 to 750  –  850  MPa and at 720  °C  – from 310 to 160  –  230  MPa for the first 600  hours, after which the reduction of mechanical characteristics are terminated. The extent of decomposition of martensitic structure in 35Kh12G3MVFDR steel determines its creep resistance at 700  °C: the preservation of martensitic structure at short times isothermal hardening (24 hours at 640  °C) did not reduce creep strength in comparison with the state after a simple quenching and tempering (86,21  ±  9,4 and 89,26  ±  8,8  MPa, respectively), but decomposition of martensitic structure (after long-term aging at 670  °C during 1600  hours) reduces this characteristic to 63,87  ±  7,1  MPa. In contrast to martensite austenite in 35Kh12G3MVFDR steel is thermally unstable and undergoes transformation into martensite after 1-2 hours depending on heating temperature.

 

About the Authors

M. Yu. Belomyttsev
National University of Science and Technology “MISiS” (MISIS), Moscow
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Metallography and Physics of Strength”


D. A. Kozlov
National University of Science and Technology “MISiS” (MISIS), Moscow
Russian Federation
Cand. Sci. (Eng.), Senior Engineer of the Chair “Metallography and Physics of Strength”


E. I. Kuz’ko
National University of Science and Technology “MISiS” (MISIS), Moscow
Russian Federation
Cand. Sci. (Phys.–Math.), Senior Lecturer of the Chair “Metallography and Physics of Strength”


A. V. Molyarov
National University of Science and Technology “MISiS” (MISIS), Moscow
Russian Federation
Postgraduate of the Chair “Metallography and Physics of Strength”


T. N. Nosirov
National University of Science and Technology “MISiS” (MISIS), Moscow
Russian Federation
MA Student of the Chair “Metallography and Physics of Strength”


References

1. Ma  B.M.  Materialy yadernykh energeticheskikh ustanovok [Materials of nuclear power plants]. Moscow: Energoatomizdat, 1987,  408  p. (In Russ.).

2. Zinkle S.J. Advanced materials for fusion technology. Fusion engineering and design. 2005, vol. 74, no. 1-4, pp. 31–40.

3. Marochnik stalei i splavov [Database of steels and alloys]. Dragunov Yu.G., Zubchenko A.S. eds. Moscow: Mashinostroenie, 2014,  1216 p. (In Russ.).

4. IAEA nuclear energy series no. NF¬T¬4.2. Structural materials for liquid metal cooled fast reactor fuel assemblies – operational behaviour. International atomic energy agency. Vienna. 2012, 103 p. 

5. Lanskaya  K.A.  Zharoprochnye stali [Heat  resistant  steels].  Moscow: Metallurgiya, 1969, 245 p. (In Russ.).

6. Khimushin F.F. Zharoprochnye stali i splavy [Heat resistant steels  and alloys]. Moscow: Metallurgiya, 1969, 752 p. (In Russ.).

7. Alekseenko I.F. Struktura i svoistva teplostoikikh konstruktsionnykh i nerzhaveyushchikh stalei [Structure and properties of hot-working  constructional  and  stainless  steels].  Moscow:  Oborongiz,  1962,  216  p. (In Russ.).

8. Rachkov  V.I.,  Obraztsov  S.M.,  Konobeev  Yu.V.,  Solov’ev  V.A.,  Belomyttsev M.Yu., Molyarov A.V. Analysis and prediction of the  physico-mechanical properties of reactor steel by means of artificial  intelligence and applied statistics. Atomic energy. 2014, vol. 116,  no. 5, pp. 311–314.

9. Gudremon E. Especial steel. Berlin: Springer-Verlag, 1956; (Russ. ed.: Gudremon E. Spetsial’nye stali. Vol. 1. Moscow: Metallurgiya,  1966, 344 p.).

10. Pickering  F.Brian.  Physical metallurgy and the design of steels.  Applied Science Publishers, 1978, 275 p. (Russ.ed.: Pickering F.B. Fizicheskoe metallovedenie i razrabotka stalei. Moscow: Metallurgiya, 1982, 182 p.).

11. Belov K.P. Magnitnye prevrashcheniya [Magnetic transformation].  Moscow: Fizmatgiz, 1959, 260 p. (In Russ.).

12. Umanskii  Ya.S.,  Skakov  Yu.A.,  Ivanov  A.N.  Rastorguev  L.N.  Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiography and electron microscopy]. Moscow:  Metallurgiya, 1982, 632 p. (In Russ.).

13. Kalin B.A, Platonov P.A., Chernov I.I., Shtrombakh Ya.I. Fizicheskoe materialovedenie: uchebnik dlya vuzov. Tom 6. Chast’ 1. Konstruktsionnye materialy yadernoi tekhniki [Material physics: textbook for universities. Vol. 6, Part. 1: Construction materials of nuclear technology]. Moscow: MIFI, 2008, 672 p. (In Russ.).

14. Alamo A.,  Brachet  J-C.,  Castaing A.,  Lepoittevin  C.,  Barcelo  F.  Physical metallurgy and mechanical behaviour of FeCrWTaV low  activation martensitic steels: effects of chemical composition. Journal of nuclear materials. 1998, no. 258-263, pp. 1228-1235.

15. Borzdyka  A.M.,  Tseitlin  V.Z.  Termicheskaya obrabotka zharoprochnykh stalei i splavov [Heat treatment of heat-resistant steels  and alloys]. Moscow: Mashinostroenie, 1964, 248 p. (In Russ.).

16. Entin R.I. Prevrashcheniya austenita v stali [Transformation of austenite in steel]. Moscow: Metallurgizdat, 1960, 253 p. (In Russ.).

17. Lanskaya K.A. Vysokokhromistye zharoprochnye stali [High-chromium heat resistant steels]. Moscow: Metallurgiya, 1967, 216 p. (In  Russ.).

18. Ganesh B.J., Raju S., Rai A.K., Mohandas E., Vijayalakshmi M.,  Rao  K.B.S.  Differential  scanning  calorimetry  study  of  diffusional  and martensitic phase transformations in some 9 wt-%Cr low carbon ferritic steels. Materials science and technology. 2011, vol. 27,  no.  2, pp. 500–512.

19. Klueh R.L., Harries D.R. High¬chromium ferritic and martensitic steels for nuclear applications. ASTM Monograph 3, ASTM International, West Conshohocken, PA, 2001, 222 p.

20. Abe F., Kern T., Viswanathan R. Creep¬resistant steels. England.  Woodhead Publishing, 2008, 700 p.


Review

For citations:


Belomyttsev M.Yu., Kozlov D.A., Kuz’ko E.I., Molyarov A.V., Nosirov T.N. INFLUENCE OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 12 % CHROMIUM STEEL WITH UNSTABLE AUSTENITE. Izvestiya. Ferrous Metallurgy. 2017;60(5):374-379. (In Russ.) https://doi.org/10.17073/0368-0797-2017-5-374-379

Views: 1307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)