Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF DAMAGEABILITY OF LOW-ALLOYED STEEL ON ITS PHYSICAL AND MECHANICAL PROPERTIES

https://doi.org/10.17073/0368-0797-2017-5-364-368

Abstract

The authors have investigated the influence of structure damageability of low-alloy and carbon steels, formed during the cyclic  deformation by curve at the coercive force and electrical resistivity.  Samples of low-alloy and carbon steel (09G2S, 10G2S1 and 3sp steel)  were deformed cyclically according to the scheme of pure bending at  a symmetrical cycle. The steel damageability was assessed by the ratio  of the number of bending cycles to the number of bends at destruction. Increase of damage up to 0.2 – 0.3 was accompanied by intense  hardening, and then the stabilization occurs. The coercive force with  increasing degree of deformation under tension is growing on a decaying curve. The electrical resistance changes similarly. During cyclic  deformation, the coercive force varies in a complicated way. This is  due to the nature of the changes of dislocation structure and the occurrence of compressive stresses near the sample surface and the stretching tension in the center. During cyclic deformation, the resistivity  initially increases slightly, then stabilizes and then abruptly increases.  Such an abrupt change of the electrical resistance of steels at cyclic  deformation is apparently caused by the occurrence of vacancies when  the direction of deformation is changed. On the basis of the conducted  research the authors have made the conclusion about the possibility of  control of structure damageability according to the changes of physical  and mechanical properties of steels.

About the Authors

A. B. Maksimov
Kerch State Marine Technical University, Kerch, Crimea
Russian Federation

Cand. Sci. (Eng.), Assist. Professor



M. V. Gulyaev
Kerch State Marine Technical University, Kerch, Crimea
Russian Federation

Cand. Sci. (Military), Assist. Professor of the Chair of Informatics and Applied Mathematics



I. S. Erokhina
Kerch State Marine Technical University, Kerch, Crimea
Russian Federation

Engineer, Lecturer



References

1. Ivanova V.S., Terent’ev V.F. Priroda ustalosti metallov [Nature of  metals fatigue]. Moscow: Metallurgiya, 1975, 456 p. (In Russ.).

2. Regel’ V.R., Slutsker A.I., Tomashevskii E.I. Kineticheskaya priroda prochnosti tverdykh tel [Kinetic  nature  of  strength  of  solids].  Moscow: Nauka, 1974, 560 p. (In Russ.).

3. Ibatullin I.D. Kinetika ustalostnoi povrezhdaemosti i razrusheniya poverkhnostnykh sloev [Kinetics of fatigue damageability and fracture of surface layers]. Samara: Izd-vo Samarskogo gos. tekhn. unta, 2008, 387 p. (In Russ.).

4. Dronov V.S., Seliverstov G.V. Kinetics of development of fatigue  damageability  in  low  carbon  steel.  Izv. Tul. GU. Ser. Pod”emnotransportnye mashiny i oborudovanie. 2006, Issue 7, pp. 207–212.  (In Russ.).

5. Vladimirov V.I. Fizicheskaya priroda razrusheniya metallov [Physi cal nature of metals fracture]. Moscow: Metallurgiya, 1984, 280  p.  (In Russ.).

6. Matsevityi  V.M.,  Bezlyud’ko  G.Ya,  Kozak  I.B,  Vakulenko  K.B,  Belous E.V. Change of coercive force under static and fatigue loading of samples of ShKh15steel. Problemy prochnosti. 2012, no. 3,  pp.  151–155. (In Russ.)

7. Gal’tsev  A.V.  Zakonomernost’ proyavleniya effekta Baushingera v deformatsionno¬uprochnennykh posle zakalki metallakh s GTsK strukturoi na primere chistogo nikelya: avtoref. dis... kand. tekh. nauk [Regularities of occurrence of the Baushinger’s effect in strain  hardened metals with the FCC structure after hardening on the example of pure nickel. Extended Abstract of Cand. Sci. Diss]. Belgorod, 2008, 23 p. (In Russ.).

8. Ueta M., Kauzig W. Generation of electron traps by plastic flow in  alkali halides. Physical review. 1955, vol. 97, no. 6, pp. 1591–1595.

9. Hempel  M.,  Kochendörfer A.,  Hillnhagen  E.  Einfluß  der  Kristallorientierung auf die Ausbildung von Gleitspuren an der Oberfläche  biegewechselbeanspruchter  α-Eisen-Einkristallproben.  Archiv für das Eisenhüttenwesen. 1957, vol. 57, no. 8, pp. 433–444.

10. Podgaiskii  M.S.,  Maksimov A.B.,  Neskub Yu.P.  Influence  of  cyclic bending strain on dislocation structure of steel 10g2sl. Russian metal lurgy. Metally. 1985, no. 5, pp. 126–128.

11. Feodos’ev V.I. Soprotivlenie materialov: uchebnik dlya vuzov [Mechanics of materials: Textbook for universities]. Moscow: MGTU,  2000, 592 p. (In Russ.)

12. Gorkunov E.S., Emel’yanov I.G., Mitropol’skaya S.Yu. Determining the stress state of a stretched rod from its measured magnetic  characteristics. Journal of Applied Mechanics and Technical Physics. 2008, vol. 49, no. 5, pp. 877–882.

13. Gorkunov  E.S.,  Smirnov  S.V.,  Zadvorkin  S.M.,  Mitropol’s-kaya  S. Yu., Vichuzhanin D.I. Correlation between the stress-strain state  parameters  and  magnetic  characteristics  of  carbon  steels.  Physics of Metals and Metallography.  2007,  vol.  103,  no.  3,   pp.  311–316.

14. Maksimov A.B., Gulyaev M.V. Distribution of strength through the  thickness of the beam at cyclic plastic bending. Problemy chernoi metallurgii i materialovedeniya. 2005, no. 2, pp. 39–43. (In Russ.).

15. Lukhvich A.A. Vliyanie defektov na elektricheskie svoistva metal¬lov [Influence of defects on electric properties of metals]. Minsk:  Nauka i tekhnika. 1976, 104 p. (In Russ.).

16. Dawson H.Y. Electric resistivity and shear modulus of copper during cyclic stressing. Journal of Applied Physics. 1968, vol. 39, no.  7,  pp. 3022–3025.

17. Williams C.R., Lee Y.L., Rilly J.T. A practical method for statistical analysis of strain-life fatigue data. Int. J. Fatigue. 2003, no. 25,  pp.  427–436.

18. Shah  M.B.,  Bose  M.  S.C.  Magnetic  NDT  technique  to  eva luate  fatigue  damage.  Physica status solidi (a).  1984,  vol.  86,  no.  1,  pp.  275–281.

19. Lo C.C.H., Tang F., Biner S.B., Jilis D.C. Effects of fatigue-induced  changes in microstructure and stress on domain structure and magnetic properties of Fe-C alloys. J. Appl. Phys. 2000, vol. 87, no. 9,  pp. 6520–6522.

20. Oding I.A., Ivanova V.S. Mechanism of fatigue cracks appearance  in metals and peculiarities of their growth. Voprosy mekhanicheskoi ustalosti. Moscow: Mashinostroenie, 1964, pp. 239–265. (In Russ.).

21. Maksimov A.B. The study of plastic deformation under cyclic tension – compression. Novye materialy i tekhnologii v metallurgii i mashinostroenii. 2010, no. 1, pp. 61–66. (In Russ.).


Review

For citations:


Maksimov A.B., Gulyaev M.V., Erokhina I.S. INFLUENCE OF DAMAGEABILITY OF LOW-ALLOYED STEEL ON ITS PHYSICAL AND MECHANICAL PROPERTIES. Izvestiya. Ferrous Metallurgy. 2017;60(5):364-368. (In Russ.) https://doi.org/10.17073/0368-0797-2017-5-364-368

Views: 596


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)