Preview

Izvestiya. Ferrous Metallurgy

Advanced search

DETERMINATION OF CHLORINE IN FEATURES OF BLAST FURNACE

https://doi.org/10.17073/0368-0797-2017-5-342-347

Abstract

Production of ferrous metals, extraction and processing of raw  materials  are  environmentally  hazardous  industries.  In  addition to emissions of gases into the atmosphere and pollution of water bodies a lot of solid waste is formed. Chlorine plays a special role in blast furnace processes. The presence of chlorine compounds in the blast furnace gas leads to corrosion of pipelines, air heaters and tuyeres of  blast  furnaces.  Behavior  of  chlorine  in  blast furnace determines the properties of the agglomerate during the technological process of recovery. Monitoring the mineral chlorine in the sediments on the filters and dust collectors (in the form of chlorine associated with the metals) are important for estimating the toxicity of waste, as well as for evaluating the production process. In the practice of chlorine determination, a number of physical methods of analysis are used: AES,  ICP-MS, neutron activation analysis methods. But chemical methods:  titrimetric,  photometric,  electrochemical,  inframetrics  are  the  most widespread. The development of rapid and inexpensive methods for determining chlorine is relevant for the analysis of technological objects,  including  the  objects  of  metallurgical  production. The objects of research in this work were the samples of blast furnace slag enterprises for the production of cast iron of JSC «Tulachermet», as well as the dusty waste of the iron foundry of JSC «Kosogorsky metallurgical plant». A preliminary analysis of the composition of investigated samples was performed by X-ray fluorescent method. The interfering effect  of  the  accompanying  components  was  discussed. A  selective  method  for  ionometric  determination  of  chlorine  was  proposed  using  a  hard-crystalline  chloride-selective  electrode.  The  sample  was  decomposed by high-temperature sintering with a mixture of Na2CO3 and ZnO and subsequent leaching with water. The description of the  research method was given. The trueness of the analysis results was confirmed by the method of variation of the sample’s mass (n  =  10; t  =  2.26; P  =  0.95), and also by comparison with the results obtained  by the X-ray fluorescent method. The estimation of accuracy indicators of the method of ionometric chlorine determination in the objects  of blast furnace production was performed. The working interval of  the determined chlorine concentrations was 0.037 – 1.340  %  by mass.

 

 

About the Authors

I. V. Murav’eva
National University of Science and Technology “MISIS” (MISIS), Moscow
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Certification and Analytical Control



G. I. Bebeshko
Federal State Research and Design Institute of Rare Metal Industry, Moscow
Russian Federation

Dr. Sci. (Eng.), Chief Researcher



References

1. Akinin N.I. Promyshlennaya ekologiya: printsipy, podkhody, tekhnicheskie resheniya [Industrial  ecology:  principles,  approaches, technical  decisions].  Dolgoprudnyi:  Izd.  dom  “Intellekt”,  2011,  312  p. (In Russ.).

2. Bartush  Kh.,  Khauk  T.,  Grabits  Kh.-G.  Balance  and  behavior of chlorine in the blast furnace process at the Huttenwerke Krupp Man-nesmann plant. Chernye metally. 2014, no. 6, pp. 45–48. (In Russ.).

3. Lectard  E.,  Hess  E.,  Lin  R.  Behaviour  of  chlorine  and  alkalis in the blast furnace and effect on sinter properties during reduction. La Revue de Metallurgie Janvier. 2004, vol. 101, Issue 1, pp. 31–38.

4. Vdovydchenko N.V., Durova L.E., Petelin A.L., Yusfin Yu.S., Travyanov  A.Ya.,  Podgorodetskii  G.S.  Analysis  of  organic-chlorine  pesticides  recovery  processes  in  blast  furnace.  Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy.  2012,  no.  5, pp.  3–7. (In Russ.).

5. Bebeshko G.I., KarpovYu.A. Current methods of determination of  chlorine in inorganic substances (overview). Inorganic Materials.  2012, vol. 48, no. 15, pp. 1341–1348.

6. Savinova E.N., Sukach Yu.S., Kolosov G.M., Tyurin D.A.New possibilities of atomic emission spectrometry for the determination of  elements with high excitation energies. Journal of Analytical Chemistry. 2015, vol. 70, no. 5, pp. 578–585.

7. Österlund H., Rodushkin I., Ylinenjärvi K., Baxter D.C. Determination of total chlorine and bromine in solid wastes by sintering and  inductively  coupled  plasma-sector  field  mass  spectrometry.  Waste Management. 2009, vol. 29, no. 4, pp. 1258–1264.

8. Frumina  N.  S.,  Lisenko  N.  F.,  Chernova  M.  A.  Analiticheskaya khimiya elementov. Khlor [Analytical chemistry of elements. Chlorine]. Moscow: Nauka 1983, 199 p. (In Russ.).

9. Vikharev A.A., Zuikova S.A., Chemeris N.A., Domina N.G. Nefelometricheskii i turbidimetricheskii analiz [Nephelometric and turbidimetric  analysis].  Available  at  URL:  http://www.chem-astu.ru/ chair/study/PCMA/r1_4_1.htm (Accessed 22.03.2011). (In Russ.).

10. Morf W.E. The principles of ion¬selective electrodes and of membrane transport.  Budapest:  Akadémiai  Kiadó,  1981.  (Russ.ed.:  Morf  W. Printsipy raboty ionoselektivnykh elektrodov i membrannyi transport. Moscow: Mir, 1985, 290 p.).

11. Bebeshko  G.I.  Use  of  purbe  diagrams  in  prediction  of  optimum conditions of seperation and determination of halogens in natural  objects using ionometry. Inorganic Materials. 2009, vol. 45, no. 14,  pp. 1548–1554.

12. Ivanov  V.V.  Ekologicheskaya geokhimiya elementov  [Ecological  geochemistry  of  elements].  Moscow:  Nedra,  1996,  vol.  3, pp.  295–306. (In Russ.).

13. Bebeshko G. I., Nesterina E. M. Ionometric determination of chlorine in rocks and soils. Zhurnal analiticheskoi khimii. 1994, vol. 49,  no. 6, pp. 645–647. (In Russ.).

14. Bebeshko  G.I.,  Murav’eva  I.V.,  Chemleva  T.A.,  Filichkina V.A. Control of mineral chlorine in dust waste atferronickel production.  Zavodskaya laboratoriya. Diagnostika materialov.  2014,  vol.  80,  no. 2, pp. 21–25. (In Russ.).

15. Aruscavage P. J., Cambell E. Y. An ion-selective electrode method  for determination of chlorine in geological materials. Talanta. 1983,  vol. 30, no. 10, pp. 745–749.

16. Elsheimer  H.N. Application  of  an  ion-selective  electrode  method  for  the  determination  of  chlorine  in  41  International  geochemical  reference  materials.  Geostand. Newslett.  1987,  vol.  11,  no.  1,  pp.  115–122

17. Wunderlich E. Zur Bestimmung von Chlorid in Zinkkonzentraten.  Erzmetall. 1981, vol. 34, no. 11, pp. 580–582. 

18. Stolyarova  I.A.,  Filatova  M.P.,  Potapova  S.V.  Ionometricheskoe opredelenie ftora i khlora s pirogidroliticheskim razlozheniem pro-by. Instruktsiya NSAM 193 Kh [Ionometric determination of fluorine and chlorinewithpyrohydrolysis decomposition of the sample.  Instruction No. 193-Kh]. Moscow: VIMS, 1982, 12 p. (In Russ.).

19. RMG 61¬2010 Gosudarstvennaya sistema obespecheniya edinstva izmerenii. Pokazateli tochnosti, pravil’nosti, pretsizionnosti metodik kolichestvennogo khimicheskogo analiza. Metody otsenki [RMG  61-2010 State system for ensuring the uniformity of measurements. Indicators of accuracy, trueness, precision methods of quantitative  chemical  analysis.Methods  of  evaluation].  Moscow:  Standartin-form, 2012. (In Russ.).


Review

For citations:


Murav’eva I.V., Bebeshko G.I. DETERMINATION OF CHLORINE IN FEATURES OF BLAST FURNACE. Izvestiya. Ferrous Metallurgy. 2017;60(5):342-347. (In Russ.) https://doi.org/10.17073/0368-0797-2017-5-342-347

Views: 970


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)