REGULARITIES OF HYDROGEN REMOVAL ON THE LADLE DEGASSING PLANT
https://doi.org/10.17073/0368-0797-2017-3-192-199
Abstract
The article describes the analysis of degassing technology of 09G2S steel, smelted in an electric arc furnace and processed in the ladle furnace in the conditions of EAF JSC “Ural Steel”. The main parameters of steel degassing have been identified. These parameters, determining the hydrogen removal efficiency on the degassing unit of chamber type, are: level and period of steel degassing, argon consumption, metal temperature, thickness of the slag layer and the value of free board. It was found that the most significant impact on the hydrogen content can be observed at increasing the duration of deep steel degassing up to 20 minutes. Further increase in treatment time is not advisable. The greatest effect of the residual pressure during degassing was observed while reducing the minimum pressure to 2 mbar. The results of steel degassing worsen significantly at the increasing of the residual pressure. Increasing metal temperature up to 1600 - 1620°C promotes the removal of hydrogen, but at temperatures above 1620°C substantially slows the hydrogen removal. The quantitative impact of steel degassing parameters and the regression equation were found and that allows to predict the results of the hydrogen removal. This equation allows to determine the steel degassing parameters and to achieve a predetermined content of hydrogen in steel. The rational parameters of steel degassing were determined, which provide of hydrogen content to 2.1 ppm in the steel: a superheat temperature of metal - 100-110°C, the duration of the steel degassing process to 20 minutes under the pressure in the vacuum vessel at most 1.5 mbar, argon consumption - 0.05 m3/t. The losses of metal temperature are determined by the total duration of the processing, which depends on the duration of deep vacuum, on the technical capabilities of equipment and organization of the degassing steel process. The minimum residual content of hydrogen in steel, which is 1.6 ppm, is ensured at carrying out of steel degassing with superheat temperature of 120 - 125°C for 40 minutes at a pressure in the vacuum vessel at most 1 mbar and with the consumption of argon – to 0.072 m3/t.
About the Authors
V. D. TutarovaRussian Federation
Cand.Sci. (Eng), Assist. Pmffessor of the Chair "Metallurgical Technology and Equipment"
A. N. Shapovalov
Russian Federation
Cand.Sci. (Eng), Assist. Pmffessor of the Chair "Metallurgical Technology and Equipment"
A. N. Kalitaev
Russian Federation
Cand.Sci. (Eng.), Assist. Pmffessor of the Chair “Computer Engineering, and Applied Mathematics"
References
1. Kudrin V.A. Teoriya i tekhnologiya proizvodstva stali: Uchebnik dlya vuzov [Theory and technology of steel production], Moscow: Mir. 2003. 528 p. (In Russ.).
2. Povolotskii D.Ya., Kudrin V.A., Vishkarev A.F. Vnepeclmaya obrabotka stali: Uchebnik dlya vuzov [Ladle treatment of steel: Textbook for universities], Moscow: MISiS, 1995, 256 p. (In Russ.).
3. Morozov A.N., Strekalovskii M.M., Chernov G.I., Katsnel'son Ya.E. Vnepeclmoe vakimmirovanie stali [Ladle degassing of steel], Moscow: Metallurgiya, 1975, 288 p. (In Russ.).
4. Kntippel Helmut. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 1. Themiodynamische und kinetische Gnmdlagen. Dtisseldorf: Verl. Stahleisen, 1970, 310 S. (Russ.ed.: Kntippel H. Raskislenie i vakuumnaya obrabotka stali. Ch. I. Termodinamicheskie i kineticheskie zakonomemosti. Moscow: Metallurgiya, 1973. 312 p.).
5. Shapovalov A.N., Tutarova V.D., Kalitaev A.N. Improving the technology of vacuum degassing of axial steels at EAF of JSC “Ural Steel”. Liteinyeprotsessy. 2003, no. 12, pp. 93-103. (In Russ.).
6. Kalitaev A.N., Tutarova V.D., Shapovalov A.N., Bazhukov D.O. Problems of formation of quality round billets at CCM. Izvestiya lUZov Chernaya metallurgiya = Izvestiya. Feirous Metallurgy.2013. no. 5, pp. 27-32. (In Russ.).
7. Shevchenko E.V., Shapovalov A.N. Problems of production of quality slab ingot at CCM no. 2 of JSC “Ural Steel”. Vestnik YuUr- GU. Seriya “Metallurgiya". 2013, vol. 13, no. 1, pp. 68-73. (In Russ.).
8. Tekhnologicheskaya instmktsiya TI 13657842-SI ES-03-2014 Obrabotka stali na ustanovke vakuuniirovaniya [Technological instruction TI 13657842-ST. ES-03-2014. Steel degassing], Novotroitsk: ОАО “Ural'skaya Stal'”, 2014, 18 p. (In Russ.).
9. Burgman V., Davene Zh. Structure of the costs of steel degassing based upon ladle furnace processing. Cliemye metally. 2012, no. 11, pp. 41—49. (In Russ.).
10. Zinchenko S.D., Filatov M.V., Efimov S.V., Dub A.V., Goshkadera S.V. Technological aspects of hydrogen removal with the use of a ladle-type vacuum-degassing unit. Metallurgist. 2004, vol. 48, no. 11-12. pp. 553-556.
11. Smirnov A.N., Safonov V.M. Steel degassing: technology, equipment. Elektrometallurgiya. 2008, no. 11, pp. 8-14. (In Russ.).
12. Nikolaev A.O., Bigeev V.A., Nikolaev O.A., Chigasov D.K. Features of degassing of pipe steel grades at CCC of OJSC “MMK”. Elektrometallurgiya. 2013, no. 4, pp. 19-24. (In Russ.).
13. Zhitlukhin E.G., Meling V.V., Dresvyankina L.E., Gudov A.G., Stepanov I. A. Development and improvement of the efficiency of steel degassing. Stal’. 2014, no. 6, pp. 12-14. (In Russ.).
14. Protasov A.V., Sivak B.A., Luk'yanov A.V., Nikitenko A.S., Shchegolev N.A. Condition and prospects of vacuum ladle of molten steel. Chernaya metallurgiya. 2010, no. 11 (1331), pp. 38—44. (In Russ.).
15. Nebosov Yu.I., Sukharev S.V., Kazakov S.V. Calculation of kinetic remove hydrogen in the gas phase during ladle vacuum treatment. lzvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2007, no. 7, pp. 16-18. (In Russ.).
16. Ardelean E., Heput Т., Vatasescu М., Crisan E. Researches regarding the influence of vacuum parameters on the efficiency of gas removal from the liquid steel. Solid State Phenomena. 2016, vol. 254, pp. 218-223.
17. Socalici А., Рора Е., Heput Т., Dragoi F. Researches regarding the improvement of the steel quality. Solid State Phenomena. 2014, vol. 216. pp. 273-278.
18. Yu S.. Miettinen J.. Louhenkilpi S. Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser. Materials Science Forum. 2013. vol. 762. pp. 253-260.
19. Steneholm K.. Andersson М.. Tilliander A.. Jonsson P.G. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmaking & Steelmaking. 2013. vol. 40. no. 3. pp. 199-205.
20. Morozov A.N. Vodorod i azot v stali [Hydrogen and nitrogen in steel], Moscow: Metallurgiya. 1968. 283 p. (In Russ.).
21. Karpenko G.V.. Kripyatkevich R.I. Vliyanie vodoroda na svoistva stali [Effect of hydrogen on the properties of steel], Moscow: Metallurgizdat. 1962, 197 p. (In Russ.).
22. Fabian E.R.. Devenyi L. Hydrogen in the plastic deformed steel. Materials Science Forum. 2007. vols. 537-538. pp. 33-40.
23. Barannikova S.A., Lunev A.G., Nadezhkin M.V., Zuev L. B. Effect of hydrogen on plastic strain localization of construction steels. Advanced Materials Reseaivh. 2014, vol. 880, pp. 42-47.
Review
For citations:
Tutarova V.D., Shapovalov A.N., Kalitaev A.N. REGULARITIES OF HYDROGEN REMOVAL ON THE LADLE DEGASSING PLANT. Izvestiya. Ferrous Metallurgy. 2017;60(3):192-199. (In Russ.) https://doi.org/10.17073/0368-0797-2017-3-192-199