MECHANISM OF METAL DECARBURIZATION AND FORMATION OF CARBON OXIDE IN AN ARC FURNACE
https://doi.org/10.17073/0368-0797-2017-3-181-186
Abstract
The paper presents a mathematical model of decarburization process with continuous supply of pellets and using fuel-oxygen burners subject to changes of slag oxidation and oxygen distribution on the of melt components oxidation during the melting. The algorithm and program of the proposed model can be used to calculate the controlled oxidative refining at electric melting of metalized pellets in an arc furnace bath. The article considers calculated by the model curves of the process components of metal decarburization, slag oxidation and the rate of steel heating from decarburization during the period of steel melting to achievement of the final metal weight in the bath of 150-t EAF at different consumption of pellets and constant supply of oxygen by fuel-oxygen burners at the melting. The data confirm the decisive contribution of oxygen from fuel-oxygen burners in the melt decarburization. General view of the curves of changes of the decarburization process components coincides with the literature and experimental data. This makes it possible to exercise effective control of electric parameters of electric melting (with electrodes current, voltage steps, etc.), providing maximum radiation of electric arcs on the surface of metal and slag. Thus, the oxygen flow through the fuel-oxygen burner allows to realize technical solutions for the electric melting of pellets in high temperature zone of the furnace. The flow of pellets, granular materials and gas mixtures are concentrated in the influence zone of electric arcs on the surface of the melt, where the processes of heating and melting of pellets are made with higher speeds than all the blown methods of loading of metalized pellets into the unit, allowing you to achieve higher technical, economic and energy-technological parameters of metallized pellets melting.
About the Authors
E. E. MerkerRussian Federation
Dr. Sci. (Eng), Professor of the Chair "Metalluigy and Metallography "
E. A. Chermenev
Russian Federation
Сand. Sci. (Eng.)
V. A. Stepanov
Russian Federation
Postgraduate of the Chair "Metalluigy and Metallography"
References
1. Barteneva O.I., Merker E.E. Research of processes of heating and decarburization of the metal in 150-t electric arc furnace with a variable bath's mass. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2001, no. 9, pp. 65-66. (In Russ.).
2. Belkovskii A.G., Filippov S.F., Kats Ya.L. Optimum content of carbon in the charge of an EAF. Metalluigist. 2013, vol. 56, no. 11-12, pp. 810-816.
3. Bigeev A.M., Bigeev V.A. Metallurgiya stali. Teoriya i tekhnologiya plavki stali [Metallurgy of steel. Theory and technology of steel melting], Magnitogorsk: MGTU, 2000, 544 p. (In Russ.).
4. Guglya V.G. Combustion of carbon in the slag melt. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2006, no. 1, pp. 9-13. (In Russ.).
5. Koptsev V.V., Kazakov O.V., Gorbulin V.N. Physical modeling of the nozzle aerodynamics of a burner with a central body. Metallurgist. 2007, vol. 51, no. 7-8, pp. 469—471.
6. Lapshin I.V. Avtomatizatsiya tekhnologicheskikh protsessov dugovoi staleplavil’noi pechi [Automation of technological processes in electric arc furnace], Moscow: ООО “Kvadratum”, 2000, 280 p. (In Russ.).
7. Gudim Yu.A., Zinurov I.Yu. Ways of melting intensification in arc furnaces. Elektmmetallurgiya. 2005, no. 9, pp. 2-6. (In Russ.).
8. Derevyanchenko I.V., Lozin G.A., Shumakher E.A., Shumakher E.E., Kucherenko O.L. Improved power supply for electrosmelting. Steel in Translation. 2005, vol. 35, no. 1, pp. 19-25.
9. Kiselev A.D., Zinurov I.Yu., Makarov D.N., Mamenko Yu.F., PiginS.N. Effectiveness of using oxygen-gas burners in modern arc steelmaking furnaces. Metallurgist. 2006, vol. 50, no. 9-10, pp. 529-533.
10. Lozin G.A., Shumakher E.A., Shumakher E.E., Derevyanchenko I.V., Kuznetsov A.V. Effectiveness of dispersing the blow to speed up the steelmaking operation. Metallurgist. 2004, vol. 48, no. 11-12. pp. 593-596.
11. Makarov A.N. Teoriya i praktika teploobmena v elektrodugovykh I fakel 'nykh pechakh, topkakh. kamerakh sgoraniya [Theory and practice of heat exchange in electric arc and torch furnaces, fire chambers, combustion chambers], Tver: TGTU, 2007, 184 p. (In Russ.).
12. Merker E.E., Chermenev E.A. Mathematical model of metal decarburization at electric melting of iron ore pellets in an arc furnace. Stal'. 2014, no. 3, pp. 28-33. (In Russ.).
13. Merker E.E., Chermenev E.A., Stepanov V.A. Power saving mode of electric melting of metallized pellets in the bath of arc furnace. Elektrometallurgiya. 2015, no. 2, pp. 2-7. (In Russ.).
14. Merker E.E., Chermenev E.A., Stepanov V.A., Kiseleva N.A., Gracheva I.Yu. Sposob plawki stali iz zhelezorudnykh metallizovannykh okatyshei v dugovoi staleplavilnoi pechi [Method of steel melting from iron ore metallized pellets EAF], Patent RF no. 2567424. Published 10.11.2015. Byulleten'izobretenii. 2015, no. 31. (In Russ.).
15. Paderin S.N., Paderin E.P. Thermodynamics and calculations of deep decarburization process of steel. Izvestiya lUZov Chernaya metalluigiya = Izvestiya. Ferrous Metallurgy. 2005, no. 10, pp. 19-24. (In Russ.).
16. Paderin S.N., Paderin P.S., Kuz'min I.V. Thermodynamic modeling of oxidative processes at steel decarburization. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2003, no. 5, pp. 6-11. (In Russ.).
17. Paderin S.N., Filippov V.V. Teoriya i raschety metallurgicheskikh sistem i protsessov [Theory and calculations of metallurgical systems and processes], Moscow: MISiS, 2002, 333 p. (In Russ.).
18. Khmeleva S.L., Padalko A.G. Mathematical modeling of the decarburization process in an electric arc furnace. In: Tr. Vserossiiskoi nauchno-prakticheskoi konferentsii "Modelirovanie, pmgrammnoe obespechenie i naukoemkie tekhnologii v metallurgii" 2011 g, Novokuznetsk [Proceedings of the All-Russian scientific-practical conference “Modeling software and high technologies in the industry”. 2011. Novokuznetsk], Novokuznetsk: SibGIU, 2011, pp. 347-355. (In Russ.).
19. Chernyakhovskii B.P., Kruchinin A.M., Smolyarenko V.D. Energy benefits of electric steel melting with continuous charge supply. Elektrometalluigiya. 2005, no. 6, pp. 18-24. (In Russ.).
20. Logar V., Dovzan D., Skrjanc I. Mathematical modeling and experimental validation of an electric arc furnace. ISIJ international. 2011, vol. 51, no. 3, pp. 382-391.
Review
For citations:
Merker E.E., Chermenev E.A., Stepanov V.A. MECHANISM OF METAL DECARBURIZATION AND FORMATION OF CARBON OXIDE IN AN ARC FURNACE. Izvestiya. Ferrous Metallurgy. 2017;60(3):181-186. (In Russ.) https://doi.org/10.17073/0368-0797-2017-3-181-186