CALCULATION OF THE TEMPERATURE AND THERMAL STRESS AT HEAT TRANSFER COEFFICIENT DEPENDING ON THE TEMPERATURE OF BODY SURFACE
https://doi.org/10.17073/0368-0797-2017-2-164-169
Abstract
About the Authors
A. D. GorbunovUkraine
Dr. Sci. (Eng.), Professor, Head of the Chair of Thermal Power
S. V. Ukleina
Ukraine
Postgraduate of the Chair of Thermal Power
References
1. Salomatov V.V., Goncharov E.I. Temperature field of an unlimited plate in case of variable values of heat transfer coefficient and temperature of external environment. IFZh. 1968, vol. 14, no. 4, pp. 743–745. (In Russ.).
2. Ivanov V.V., Salomatov V.V. On the calculation of the temperature field in solids with variable heat-transfer coefficients. Journal of Engineering Physics. 1967, vol. 9, no. 1, pp. 63–65.
3. Vidin Yu.V. Research of heat conduction of solid bodies in case of variable boundary conditions. Izv. AN SSSR. Energetika i transport. 1967, no. 4, pp. 132–134. (In Russ.).
4. Ivanov V.V. Calculation of non-linear heat conduction in case of float heat transfer coefficient. Izv. vuz. Aviatsionnaya tekhnika. 1967, no 2, pp. 89–92. (In Russ.).
5. Prikhod’ko I.M. Temperature field of the unlimited cylinder and sphere at changing in time heat transfer coefficient and ambient temperature. In: Sb. trudov Stroitel’naya teplofizika [Building thermal physics. Coll. of papers]. Moscow: Energiya, 1966, pp. 297–304. (In Russ.).
6. Kiselev K.A., Lazarev A.I. Temperature field of an unlimited plate in case of variable value of heat transfer coefficient and temperature of an external environment. Zhurnal tekhnicheskoi fiziki. 1960, vol. XXX, no. 6, pp. 616–621. (In Russ.).
7. Prikhod’ko I.M. Temperature field of a plate at changing in time heat transfer coefficients and ambient temperature. Izv. vuz. Aviatsionnaya tekhnika. 1963, no 3, pp. 21–27. (In Russ.).
8. Vujanoric B., Dfukic Dj. On one Yariational principle of Hamilton’s type for nonlinear heat transfer problem. Internat. J. Heat and Mass Transfer. 1972, vol. 15, no. 5, p. 111.
9. Sitzler R. Ein Analogiemodell zur Behandlung instationarer Warmeleitungsp: lems, bei temperaturabhangigen Stoffeigenschaften. Prakt. Energiekunde. 1967, Bd. 15, no. 3, p. 37. (In Germ.)
10. Gay B. Comparison of methods for solution of the heat conduction equations a radiation boundary condition. Internat. J. Heat and Mass Transfer. 1965, vol. 8, no. 3, p. 507.
11. Goodman T.R. Application of integral methods to transient nonlinear heat transfer. In: Advances in Heat Transfer. vol. 1. New York: Academic Press, 1964, pp. 51–122.
12. Dicker D., Asnani M. A perturbation solution for the nonlinear radiation heat transfer problem. Proc. 3-rd Internat. Heat Transfer Conf., Chicago. 1966, vol. 5, p. 164.
13. Frost W., Eraslan A. An iterative method for determining the heat transfer from a fin with radiative interaction between the base and adjacent fin surfaces. AIAA Piper. 1968, no. 772, p. 10.
14. Mueller H.F., Malmuth N. D. Temperature distribution in radiating heat shieldsby the method of singular perturbations. Internat. J. Heat and Mass Transfer. 1965, vol. 8, p. 915.
15. Na F.Y., Tang S.C. A method for the solution of conduction heat transfer with non-linear heat generation. Z. angew. Math, und Mech. 1969, vol. 49, no. 1, p. 45.
16. Stops D.W., Pearson R.E. Analogous studies of simultaneous conductive and radiative heat transfer. Britn. J. Appl. Phys. 1966, vol. 17, no. 11, p. 1491.
17. Crosbie A.L., Viskanta R. Transient heating or cooling of a plate by combined convection and radiations. Internat. J. Heat and Mass Transfer. 1968, vol. 11, no. 2, p. 305.
18. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow: Energiya, 1975, 448 p. (In Russ.).
19. Gorbunov A.D. Analytical calculation of process of radiation heating (cooling) of bodies at an initial stage. Matematichne modelyuvannya. 2012, no. 2 (27), pp. 90–94. (In Russ.).
20. Gorbunov A.D. Analytical calculation of thermal tension at convective heating of bodies of a simple form. Matematicheskoe modelirovanie. 2012, no. 1 (26), pp. 39–45. (In Russ.).
Review
For citations:
Gorbunov A.D., Ukleina S.V. CALCULATION OF THE TEMPERATURE AND THERMAL STRESS AT HEAT TRANSFER COEFFICIENT DEPENDING ON THE TEMPERATURE OF BODY SURFACE. Izvestiya. Ferrous Metallurgy. 2017;60(2):164-169. (In Russ.) https://doi.org/10.17073/0368-0797-2017-2-164-169