Preview

Izvestiya. Ferrous Metallurgy

Advanced search

PHYSICAL-CHEMICAL ASSESSMENT OF SILICON CARBIDE – PRODUCT OF TECHNOGENIC SILICA RECOVERY BY FUME LIGNITE SEMI-COKE

https://doi.org/10.17073/0368-0797-2017-2-145-150

Abstract

The paper describes the conducted physical-chemical certification of silicone carbide, obtained from fine-grained charge of two kinds, which contains microsilica formed at the production of silicon and high-silicon ferrosilicium, as well as semicoke from brown coal of Beresovskii deposit of Kansk-Achinsk basin. Microsilca of both kinds contains 93.41 – 95.33 % and 91.72 – 93.00 %, 63 % of SiO2 ; 1.96 – 3.28 % and 0.56 – 1.18 % of Ссвоб. ; 0.30 – 0.34 % and 0.18 – 0.20 % of Siсвоб. ; 1.25 – 1.45 % and 1.38 – 2.32 % of (CaO + Fe2O3 + MnO). Microsilica has a specific surface of 21 000 – 24 000 m2/kg and is inclined to aggregation with the formation of spherical units with the size of 200 – 800 nm. The units consist of spherical particles with a dimensional diapason from 30 to 100 nm. Brown-coal semicoke contains 94.05 % of carbon; 9.2 % of ash; 0.2 % of sulfur; 0.007 % of phosphorus and has a specific surface of 264 000 kg/m2. Phase and chemical compositions of silicone carbide, its specific surface, the size and the form of carbide particles have been studied. It has been established that in both cases predominate phase is silicon carbide of a cubical structure (β-SiC), but an accompanied one is a glassy phase, formed with lime silicate, magnesium and iron. At carburizing of charge, containing microsilca of the production of ferrosilicium, α-iron accompanies to silicon carbide. At the synthesis temperature of 1923 and 1973 K and the duration of 50 and 90 minutes polymorthic transformation of β-SiC into α-SiCII occurs. The content of silicon carbide in the products of carbonization is 82,52 – 84,90 %. The authors of the work have established the viability and optimal conditions of chemical enrichment of silicon carbide: influence of hydrochloric acid with the concentration of not less than 35 % at the temperature of 353 K, ratio of Т:Ж = 1:2, durability of 3 hours. The indexes of chemical enrichment have been defined: the content of silicon carbide in the products of enrichment is 90.42 – 91.10 %, removal of impurities of metal and iron oxides of 87 – 95 %. Silicon carbide appears as micropowder with the particles of wrong form with the dimensional range of 0.2 – 1.0 um with the specific surface of 8000 – 9000 m2/kg.

About the Authors

A. E. Anikin
Siberian State Industrial University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Thermal Power and Ecology”


G. V. Galevskii
Siberian State Industrial University
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Non-ferrous Metallurgy and Chemical Engineering”, Director of the Institute of Metallurgy and Materials


V. V. Rudneva
Siberian State Industrial University
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Non-ferrous Metallurgy and Chemical Engineering


References

1. Garshin A.P., Shumyacher V.M., Pushkarev O.I. Abrazivy i materialy konstruktsionnogo naznacheniya na osnove karbida kremniya [Abrasives and materials of constructional use based on silicon carbide]. Volgograd: VolgGASU, 2008, 189 p. (In Russ.).

2. Garshin A.P. Keramika dlya mashinostroeniya [Ceramics for machinebuilding industry]. Moscow: Mosnauchtekhlitizdat, 2003, 384 p. (In Russ.).

3. Moshtaghioun B.M., Poyato R., Cumbrera F.L., de Bernardi-Martin S., Monshi A., Abbasi M.H. Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating. Journal of the European Ceramic Society. 2012, vol. 32, no. 8, pp. 1787–1794.

4. Evans R.S., Bourell D.L., Beaman J.J., Campbell M.I. Rapid manufacturing of silicon carbide composites. Rapid Prototyping Journal. 2005, vol. 11, no. 1, pp. 37–40.

5. Shi L., Zhao H., Yan Y., Li Z., Tang Ch. Synthesis and characterization of submicron silicon carbide powders with silicon and phenolic resin. Powder Technology. 2006, vol. 169, no. 2, pp. 71–76.

6. Dhanaraj G., Raghothamachar B., Dudley M. Growth and Characterization of Silicon Carbide Crystals. Springer Handbook of Crystal Growth. 2010, pp. 797–820.

7. Willander M., Friesel M., Wahab Q., Straumal B. Silicon carbide and diamond for high temperature device applications. Journal of Materials Science. 2006, vol. 24, no. 3, pp. 816–830.

8. Galevskii G.V., Protopopov E.V., Temlyantsev M.V. Usage of technogenic metallurgical wastes in the technology of silicon carbide. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2014, no. 4, pp. 103–110. (In Russ.).

9. Polyakh O.A., Rudneva V.V., Yakushevich N.F., Galevskii G.V., Anikin A.E. Application of technogenic waste of metallurgical plants for the production of silicon carbide. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2014, no. 8, pp. 5–12. (In Russ.).

10. Lee H. High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Materialia. 2007, 55(2), pp. 727–736.

11. TU 5743 – 048 – 02495332 – 96. Mikrokremnezem kondensirovannyi. Vved. 01.08.1995 [TU 5743 – 048 – 02495332 – 96. Condensed microsilica. Introduced 01.08.1995]. Moscow, 1996. (In Russ.).

12. TU 14 – 142 – 17 – 01. Mikrokremnezem uplotnennyi ogneupornyi. Vved. 01.06.2001 [TU 14 – 142 – 17 – 01. Compacted fire-proofed microsilica. Introduceed 01.06.2001]. Novokuznetsk, 2001. (In Russ.).

13. Anikin A.E., Galevskii G.V., Rudneva V.V., Galevskii S.G. Metallization of oxide-iron-containing wastes of metallurgical production. In: XIV Mezhdunarodnyi kongress staleplavil’shchikov i proizvoditelei metalla : sb. trudov [14th Int. congress of steelmakers and metal producers: Coll. papers]. Moscow – Elektrostal’: MGOO “Assotsiatsiya staleplavil’shchikov”, 2016, pp. 608–614. (In Russ.).

14. Anikin A.E., Galevskii G.V., Rudneva V.V., Galevskii S.G. Usage of brown-coal semicoke in metallurgy: technological and economical assessment. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2016, no. 2 (243), pp. 114–123. (In Russ.).

15. Strakhov V.M. Scientific and industrial aspects of receiving special kinds of coke for electro-thermal production. Koks i khimiya. 2008, no. 9, pp. 44–49. (In Russ.).

16. Strakhov V.M. Problems with carbon materials in ore and chemical electrofurnaces. Coke and Chemistry. 2010, vol. 53, no. 8, pp. 301–304.

17. Abderrazak H., Selmane Bel Hadj Hmida E. Silicon carbide: synthesis and properties. Book edited by Rosario Gerhardt. 2011, vol. 4, pp. 1211–1226.

18. Fu Q.-G., Li H.-J., Shi X.-H., Li K.-Zh., Sun G.-D. Silicon carbide coating to protect carbon/carbon composites against oxidation. Scripta Materialia. 2005, vol. 52, no. 9, pp. 923–927.

19. Rezaie1 A., Fahrenholtz W.G., Hilmas G.E. Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. Journal of the European Ceramic Society. 2007, vol. 27, no. 6, pp. 2495–2501.

20. Ohtani N., Katsuno M., Nakabayachi M., Fujimoto T., Tsuge H., Yaschiro H., Aigo T., Hirano H., Hoshino T., Tatsumi K. Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport. Journal of Crystal Growth. 2009, vol. 6, pp. 1475–1481.


Review

For citations:


Anikin A.E., Galevskii G.V., Rudneva V.V. PHYSICAL-CHEMICAL ASSESSMENT OF SILICON CARBIDE – PRODUCT OF TECHNOGENIC SILICA RECOVERY BY FUME LIGNITE SEMI-COKE. Izvestiya. Ferrous Metallurgy. 2017;60(2):145-150. (In Russ.) https://doi.org/10.17073/0368-0797-2017-2-145-150

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)