Preview

Izvestiya. Ferrous Metallurgy

Advanced search

APPLICATION OF ATOMIC FORCE MICROSCOPY FOR STAINLESS STEEL MICROSTRUCTURE STUDY AT VARIOUS KINDS OF HEAT TREATMENT

https://doi.org/10.17073/0368-0797-2017-2-133-139

Abstract

The paper presents the results of complex researches of 40Cr13 stainless steel. Using the methods of optical, scanning and atomicforce microscopy, micro- and nanostructures have been obtained, as well as has been given the comparison of the received images of structures and phase states of steel in three different states (after annealing, hardening and high-temperature tempering) with the results of electron and optical microscope investigations. The received optical images of a ferrite-pearlite structure of a valuable content of globular carbide with the composite of (Сr, Fe)23C6 , received after annealing, are given in comparison with the research results of scanning and atomic-force microscope investigations. It has been shown that the use of atomic-force and scanning electron microscopy in this work allows to make conclusions on steel microstructure, which coincide not only with the data of optical metallography but also exceed the latter in specification of structural characteristics. The usage of scanning electron microscopy allows establishing that large carbides are situated along the borders of ferrite grains. There are also some number of carbides inside the fine grains of ferrite; the sizes of inclusions have been defined. After hardening there are some structures which consist of macroacicular martencite. The usage of the images of atomic-force microscopy allows receiving the structure with the expressed acicular structure in comparison with scanning electron microscopy with the possibility to build visual 3D-images. The form of undissolved carbides is also globular. The sizes of martensitic lamella have been defined. The steel structure after high-temperature tempering (secondary sorbite) is formed as the result of the cracking of martensite on ferrite-carbide mixture with the formation of carbides of right round shape. The formed single and line carbides contain strong carbide-former – chromium (Сr, Fe)23C6 . It was confirmed by the results of spectrum analysis. Such structure differs from martensite in higher strength. For all the states the authors have given the results of mechanical tests by the scheme of axial extension, as well as have defined the HB hardness.

About the Authors

G. V. Shlyakhova
Institute of Strength Physics and Materials Science SB RAS; Seversk Technological Institute, National Research Nuclear University
Russian Federation
Cand. Sci. (Eng.), Research Associate, Assist. Professor of the Chair “Machines and Devices of Chemical and Atomic Productions”


A. V. Bochkareva
Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk Polytechnic University
Russian Federation
Cand. Sci. (Eng.), Junior Researcher, Assist. Professor of the Chair “Theoretical and Applied Mechanics”


S. A. Barannikova
Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University
Russian Federation
Dr. Sci. (Phys.-math.), Assist. Professor, Leading Researcher, Professor of the Chair “Mechanics of Strained Solids”


L. B. Zuev
Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of Laboratory of Physics of Strength, Professor of the Chair “Theory of Strength and Designing”


E. V. Martusevich
Siberian State Industrial Universisty
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Science named after V.M. Finke


References

1. Eksner G.E. Quality and quantity surface microscopy. In: Fizicheskoe metallovedenie. V 3 tomakh. T. 1. [Physical metallurgy. In 3 vols. Vol. 1]. Kan R.U., Khaazen P.T. eds. Moscow: Metallurgiya, 1987, pp. 50–111. (In Russ.).

2. Knechtel H.E., Kindle W.F., McCallJ.L., Buchheit R.D. Metallography. In: Metallography. Tools and Techniaues in Physical Metallurgy. Vol. 1. Weinberg F. ed. New York: McGraw-Hill, 1970, pp. 329–400. (Russ.ed.: Knechtel H.E. Metallograficheskie metody issledovaniya. In book: Pribory i metody fizicheskogo metallovedeniya. Weinberg F. ed. Moscow: Mir, 1973, pp. 203–276.)

3. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope. Physical Review Letters. 1986, vol. 56, no. 9, pp. 930–933.

4. Mironov V.L. Osnovy skaniruyushchei zondovoi mikroskopii [Basics of scanning probe microscopy]. Moscow: Tekhnosfera, 2004, 143 p. (In Russ.).

5. Lapshin R.V. Feature-oriented scanning methodology for probe microscopy and nanotechnology. Nanotechnology. 2004, vol. 15, no. 9, pp. 1135–1151.

6. Zuev L.B., Shlyakhova G.V. On possibilities of atomic force microscopy in metallography of carbon steels. Materialovedenie. 2014, no. 7, pp. 7–12. (In Russ.).

7. Dobrotvorskii A.M., Maslikova E.I., Shevyakova E.P., Ul’yanov P.G., Usachev D.Y., Senkovskiy B.V., Adamchuk V.K., PushkoS.V., Mal’Tsev A.A., Balizh K.S. Metallographic study of construction materials with atomic force microscopy method. Inorganic Materials. 2014, vol. 50, no. 15, pp. 1487–1494.

8. Ulyanov P.G., Usachov D.Yu., Fedorov A.V., Bondarenko A.S., Senkovskiy B.V., Vyvenko O.F., Pushko S.V., Balizh K.S., Maltsev A.A., Borygina K.I., Dobrotvorskii A.M., Adamchuk V.K. Microscopy of carbon steels: Combined AFM and EBSD study. Applied Surface Science. 2013, vol. 267, pp. 216–218.

9. Bykov I.V. Methods of point-by-point relief measurements, action forces and local properties: new approach for complex analysis in atomic force microscopy. Nauchnoe priborostroenie. 2009, no. 4 (19), pp. 38–43. (In Russ.).

10. Danilov V.I., Shlyakhova G.V., Semukhin B.S. Plastic deformation macrolocalization. Local stress and fracture in ultrafine grain titanium. Applied Mechanics and Materials. 2014, vol. 682, pp. 351–356.

11. Shlyakhova G.V., Barannikova S.A., Zuev L.B. Nanostructure of superconducting Nb-Ti cable. Steel in Translation. 2013, vol. 43, no. 10, pp. 640–643.

12. Zuev L.B., Shlyakhova G.V., Barannikova S.A., Kolosov S.V. Microstructure of the elements of a superconducting alloy Nb-Ti cable. Russian metallurgy (Metally). 2013, vol. 2013, no. 3, pp. 229–234.

13. Afonin V.K., Ermakov B.S., Lebedev E.L. etc. Metally i splavy: Spravochnik [Metals and alloys: Reference book]. Solntsev Yu.P. ed. St. Petersburg: Professional, 2007, 1092 p. (In Russ.).

14. Pelleg J. Mechanical Properties of Materials. Dordrecht, Heidelberg, New York, London: Springer, 2013.

15. Wiesendanger R. Scanning Probe Microscopy and Spectroscopy. Methods and Applications. Cambridge: University Press, 1994, 637 p.

16. Beckert M., Klemm H. Handbuch der metallographischen Ätzverfahren. 3. Aufl. Deutscher Verlag für Grundstoffindustrie, VEB, 1976, 410 S. (Russ.ed.: Beckert M., Klemm H. Sposoby metallograficheskogo travleniya. Spravochnik. Moscow: Metallurgiya, 1988, 400 p.).

17. Barannikova S.A., Bochkareva A.V., Lunev A.G., Shlyakhova G.V., Zuev L.B. Changes in ultrasound velocity in the plastic deformation of high-chromium steel. Steel in Translation. 2016, vol. 46, no. 8, pp. 552–557.

18. Trefilov V.I., Moiseev V.F., Pechkovskii E.P. Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov [Mechanical hardening and destruction of polycrystalline metals]. Kiev: Naukova dumka, 1989, 256 p. (In Russ.).

19. Metallografiya zheleza. Atlas stalei v 3 tomakh [Iron metallography. Atlas of steels in 3 vols.]. Tavadze F.N. ed. Moscow: Metallurgiya, 1972, 760 p. (In Russ.).

20. GOST 8233–56. Stal’. Etalony mikrostruktury [State Standard 8233–56. Steel. Reference standards of microstructure]. Moscow: Izd-vo standartov, 2004. (In Russ.).


Review

For citations:


Shlyakhova G.V., Bochkareva A.V., Barannikova S.A., Zuev L.B., Martusevich E.V. APPLICATION OF ATOMIC FORCE MICROSCOPY FOR STAINLESS STEEL MICROSTRUCTURE STUDY AT VARIOUS KINDS OF HEAT TREATMENT. Izvestiya. Ferrous Metallurgy. 2017;60(2):133-139. (In Russ.) https://doi.org/10.17073/0368-0797-2017-2-133-139

Views: 731


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)