ON SOME PARAMETERS OF DRY SLIDING CONTACT STEEL/STEEL AT HIGH CURRENT DENSITY
https://doi.org/10.17073/0368-0797-2017-1-43-47
Abstract
About the Authors
M. I. AleutdinovaRussian Federation
Cand. Sci. (Eng.), Research Associate,
Tomsk,
Seversk, Tomsk Region
V. V. Fadin
Russian Federation
Cand. Sci. (Eng.), Assist. Professor, Senior Researcher,
Tomsk
V. E. Rubtsov
Russian Federation
Cand. Sci. (Eng.), Senior Researcher,
Tomsk
References
1. Kostetskii B.I. Structural and energetic adaptability of materials at friction. Trenie i iznos. 1985, vol. 6, no. 2, pp. 201–212. (In Russ.).
2. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Friction and wear calculation methods. Pergamon Press: New York, 1982, 464 p.
3. Blau P.J. Friction science and technology: from concepts to applications. CRC Press, 2009 by Taylor & Francis Group, LLC, 432 p.
4. Wang X., Wei X., Hong X., Yang J., Wang W. Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel. Appl. Surface Science. 2013, vol. 280, pp. 381–387.
5. Rahaman M.L., Zhang L. On the estimation of interface temperature during contact sliding of bulk metallic glass. Wear. 2014, vol. 320, pp. 77–86.
6. Fadin V.V., Aleutdinova M.I., Rubtsov V.Ye. About wear and average surface femperature of copper or steel contacts at sliding current. AIP Conf. Proc. 2015, no. 1683, pp. 020051-1-020051-4.
7. Trenie, iznos i smazka (tribologiya i tribotekhnika) [Friction, wear and lubrication].Chichinadze A.V. ed. Moscow: Mashinostroenie, 2003, 576 p. (In Russ.).
8. Braunovich M., Konchits V.V., Myshkin N.K. Electrical contacts. Fundamentals, applications and technology. Taylor & Francis Group, LLC, 2007. 640 p.
9. Amosov A.P. Teplofi zicheskie modeli treniya inertnykh i vzryvchatykh materialov [Thermal models of friction of inert materials and explosives]. Moscow: Mashinostroenie, 2011, 363 p. (In Russ.).
10. Kennedy F.E., Lu Y., Baker I. Contact temperatures and their influence on wear during pin-on-disk tribotesting. Tribology International. 2015, vol. 82, pp. 534–542.
11. Aleutdinova M.I., Fadin V.V. Infl uence of cold working on the wear of AISI 1020 steel in dry sliding contact at high current density. Steel in Translation. 2015, vol. 45, no. 6. pp. 418–422.
12. Panin V.E. Synergetic principles of physical mesomechanics. Theor. Appl. Fracture Mech. 2001, vol. 37, no. 1–3, pp. 261–298.
13. Rao R.N., Das S., Mondal D.P., and Dixit G. Mechanism of material removal during tribological behaviour of aluminium matrix (Al-Zn-Mg-Cu) composites. Tribology International. 2012, vol. 53, pp. 179–184.
14. Jankauskas V., Antonov M., Varnauskas V., Skirkus R., and Goljandin D. Eff ect of WC grain size and content on low stress abrasive wear of manual arc welded hard facings with low-carbon or stainless steel matrix. Wear. 2015, vol. 328–329, pp. 378–390.
15. Rhanafi -Benghalem N., Felder E., Loucif K., Montmitonnet P. Plastic deformation of 25CrMo4 steel during wear: eff ect of the temperature, the normal force, the sliding velocity and the structural state. Wear. 2010, vol. 268, pp. 23–40.
Review
For citations:
Aleutdinova M.I., Fadin V.V., Rubtsov V.E. ON SOME PARAMETERS OF DRY SLIDING CONTACT STEEL/STEEL AT HIGH CURRENT DENSITY. Izvestiya. Ferrous Metallurgy. 2017;60(1):43-47. (In Russ.) https://doi.org/10.17073/0368-0797-2017-1-43-47