ISSN: 0368-0797. Известия высших учебных заведений. Черная металлургия. 2015. Том 58. № 5. С. 316 – 321. © 2015. Якушевич Н.Ф., Полях О.А., Галевский Г.В., Тяжина А.А.

УДК 666.782:536.7

## АНАЛИЗ ФАЗОВО-ХИМИЧЕСКИХ РАВНОВЕСИЙ В СИСТЕМЕ РАСПЛАВ (Fe-Si-C)-ШЛАК (CaO-Al,O<sub>3</sub>-SiO<sub>2</sub>)-ГАЗ (O<sub>2</sub>-SiO-CO)

Якушевич Н.Ф., д.т.н., профессор кафедры металлургии цветных металлов и химической технологии Полях О.А., к.т.н., доцент кафедры металлургии цветных металлов и химической технологии Галевский Г.В., д.т.н., профессор, заведующий кафедрой металлургии цветных металлов и химической технологии, директор Института металлургии и материаловедения (kafcmet@sibsiu.ru) Тяжина А.А., аспирант кафедры металлургии цветных металлов и химической технологии

Сибирский государственный индустриальный университет

(654007, Россия, Кемеровская обл., г. Новокузнецк, ул. Кирова, 42)

- Аннотация. Определены равновесные составы высококремнистых металлических расплавов, сосуществующих с шлаками системы CaO−Al<sub>2</sub>O<sub>3</sub>−SiO<sub>2</sub>. Зависимости активностей *a* кремния в железокремниевых расплавах представлены в виде линий изоактивностей на диаграмме состояния Fe−Si. Рассчитаны равновесные с металлическим расплавом зависимости  $\lg P_{O_2} = f(x_{\rm Si}, T)$  для температур 1823, 1873, 1973 К и влияние  $a_{\rm SiO_2} = f(x_{\rm Si}, T)$  на равновесные с металлическим расплавом зависимости  $\lg P_{O_2} = f(x_{\rm Si}, T)$  для температур 1823, 1873, 1973 К и влияние  $a_{\rm SiO_2} = f(x_{\rm Si}, T)$  на равновесный состав газовой фазы  $P_{O_2} = f(x_{\rm Si}, T, a_{\rm SiO_2})$ . Проанализированы и скорректированы данные по активностям диоксида кремния в шлаках системы CaO−Al<sub>2</sub>O<sub>3</sub>−SiO<sub>2</sub>. Показано, что каждому сплаву заданного состава при фиксированной температуре соответствует только одно значение  $a_{\rm SiO_2}$ , представленное на концентрационной диаграмме линией изоактивности. Установлено, что в присутствии углерода все высококремнистые сплавы могут быть получены при температурах  $T \ge 1973$  К при значения  $a_{\rm SiO_2} > 0,8$ ; при 1873 К и  $a_{\rm SiO_2} > 0,9$  могут быть получены лишь сплавы с содержанием кремния менее 25 %, а при снижении  $a_{\rm SiO_2}$  до 0,4 менее 20 %. При более низких температурах (≤ 1823 К) можно под кислым шлаком ( $a_{\rm SiO_2} > 0,5$ ) получить лишь низкокремнистые сплавы (< 15 % Si).
- *Ключевые слова*: кремнистый сплав, шлаковый расплав, активности, фазово-химические равновесия, углеродотермическое восстановление, треугольник концентраций.

DOI: 10.15825/0368-0797-2015-5-316-321

Исследование равновесий между металлическими и шлаковыми расплавами – одна из важнейших задач металлургии, точное решение которой зависит от многих трудно определяемых параметров. Применительно к кремнистым сплавам эту задачу пытаются решить при помощи описания равновесия реакции

$$2MeO_x + xSi = 2Me + xSiO_2,$$

$$K_{(1)} = \frac{a_{SiO_2}^x a_{Me}^2}{a_{Si}^x a_{MeO_2}^2},$$
(1)

при этом необходимо иметь достаточно надежную информацию по пяти параметрам – температуре *T*, активностям  $a_{SiO_2} = f(x_{SiO_2}, T)$ ,  $a_{Me} = f(x_{Me}, T)$ ,  $a_{Si} = f(x_{Si}, T)$ ,  $a_{MeO} = f(x_{MeO}, T)$ . Такая информация для большинства высокотемпературных систем либо отсутствует, либо представлена данными, полученными различными экспериментальными и расчетными методами, которые при количественном сравнении часто отличаются кратно, что не позволяет делать достаточно корректные расчеты при оценке параметров реальных технологических процессов, в том числе равновесных составов сосуществующих металлических и шлаковых расплавов.

Равновесие кремнистых сплавов с шлаками и газовой фазой описывается реакцией

$$\mathrm{Si} + \mathrm{O}_2 = \mathrm{SiO}_2, \tag{2}$$

и сопутствующими реакциями

$$2\mathrm{Si} + \mathrm{O}_2 = 2\mathrm{SiO}_{\mathrm{r}},\tag{3}$$

$$SiO_2 + Si = 2SiO_r;$$
(4)

а в присутствии углерода также реакциями

$$2C + O_2 = 2CO, \qquad (5)$$

$$Si + C = SiC_{TB}$$
, (6)

$$\operatorname{SiO}_{2} + \frac{1}{2}\operatorname{SiC}_{\mathrm{TB}} = \frac{3}{2}\operatorname{SiO} + \frac{1}{2}\operatorname{CO}.$$
 (7)

Для реакции (2) имеем 
$$K_2 = \frac{a_{\text{SiO}_2}}{a_{\text{Si}}P_{\text{O}_2}}, K_2 = \frac{49\,433}{T} - 10,33.$$

Для полной характеристики равновесного состояния необходимо знать следующие параметры: T,  $a_{\rm Si} = f(x_{\rm Si}; a_{\rm SiO_2} = f(x_{\rm SiO_2}))$  и  $P_{\rm O_2}$ . Применительно к получению железокремниевых сплавов нижний температурный предел ограничивается областями существования гомогенных металлических и шлаковых расплавов (~1700 К), верхний, как правило, не превышает 2000 К, выше которого интенсивно протекают сопутствующие реакции (3), (4).

Активность кремния  $a_{Si} = f(x_{Si}, T)$  в расплавах Fe-Si и Fe-Si-C изучалась многократно [1-4]. Во всех работах отмечается отрицательное отклонение от закона Рауля для всех исследованных интервалов концентраций ( $x_{si} = 0 \div 1$ ) и температур (1700 ÷ 1973 К) и тем более сильное, чем меньше концентрация кремния в спла-ве (при  $x_{Si} < 0,1$  lg $\gamma_{Si} = 1 \cdot 10^{-2,7}_{1700} \div 1 \cdot 10^{-2,3}_{1973}$ ) [1]. Однако количественные результаты исследований отличаются значительно (рис. 1), в связи с чем с целью получения корректных данных, пригодных для расчетов равновесных состояний, активности кремния в сплавах при температурах 1773, 1873 и 1973 К сопоставлены с диаграммой состояния системы Fe-Si (рис. 2). Полученные зависимости, представленные как линии изоактивности кремния, достаточно достоверно отображают картину изменения активности кремния. Активность кремния для сплава данного состава, особенно для сплавов с высоким содержанием кремния (Si > 30 % (по массе)), мало зависит от температуры, что позволяет экстраполировать полученные зависимости как в область более высоких, так и в область более низких температур. Так, например, показано, что при 1600 К (изотерма АВСДЕ на рис. 2) активность кремния в области изменения концентраций кремния от 70 до 44 % (по массе) уменьшается от 1,00 до 0,48 (участок АВ на рис. 1); на участке BC (смесь Ж + FeSi<sub>те</sub>) – жидкий расплав с





Fig. 1. Dependence of the silicon activity on the alloy composition and temperature. The Fe–Si–C alloys: — — — – 1700 °C, — — — – 1600 °C, — — — – – 1500 °C; the Fe–Si alloys: —, — — , — – – – 1700 °C, — , — — – , — – – 1600 °C, — , — – – , — – – – 1500 °C твердыми кристаллами моносилицида FeSi, при этом активность кремния в жидком расплаве не изменяется  $(a_{\rm Si} = 0.5 = {\rm const});$  при составе смеси, соответствующей точке *C*, протекает химическая реакция

$$m \mathcal{K}_B \to (m-n) \mathrm{FeSi}_{\mathrm{TB}} + n \mathcal{K}_D,$$
 (8)

при этом активность кремния в жидком расплаве изменяется от 0,5 до 0,05 (участок CD на рис. 1); на участке DE в области гомогенных расплавов активность кремния уменьшается от 0,05 до практически нулевых значений.

В расплавах Fe-Si-C, насыщенных углеродом, активность кремния для сплавов заданного состава выше, чем для расплавов Fe-Si. Рассчитанные в соответствии с константой равновесия реакции (2) в сплавах с содержанием кремния более 45 % (по массе) значения  $\lg P_{O_2}$  (при  $a_{SiO_2}=1$ ) мало зависят от состава расплава (рис. 2), незначительное уменьшение наблюдается лишь в низкокремнистых сплавах Si < 30 % (по массе).

Для сплавов, выплавляемых в соответствии с государственными и международными стандартами, содержащих 10 – 90 % (по массе) Si, табулированные значения  $a_{\rm Si} = f(x_{\rm Si}, T)$ , принятые для расчетов равновесных состояний, представлены в таблице. Влияние  $a_{\rm SiO}$  на



Рис. 2. Связь термодинамических параметров железокремниевых расплавов  $\Pi = f(x_{\text{Si}}, T)$  с диаграммой состояния системы Fe–Si: —  $a_{\text{Si}} = f(x_{\text{Si}}, T)$  в расплавах Fe–Si; —  $-a_{\text{Si}} = f(x_{\text{Si}}, T)$  в расплавах Fe–Si, —  $-a_{\text{Si}} = f(x_{\text{Si}}, T)$  в расплавах Fe–Si– $C_{\text{Hac}}$ ; —  $-P_{\text{O2}} = \text{const} = f(x_{\text{Si}}, T)$ ; —  $-P_{\text{SiO}} = \text{const} = f(x_{\text{Si}}, T)$ ; — - линия выделения карбида кремния из расплавов, насыщенных углеродом

Fig. 2. The link of thermodynamic parameters of iron-silicon melts  $\Pi = f(x_{si}, T)$ with the state diagram of the Fe–Si system:  $-a_{Si} = f(x_{si}, T)$ in Fe–Si melts;  $---a_{Si} = f(x_{Si}, T)$ in Fe–Si–C<sub>Hac</sub> melts;  $----P_{O_2} = \text{const} = f(x_{Si}, T)$ ;  $----P_{SiO} = \text{const} = f(x_{Si}, T)$ ;  $-----P_{SiO} = \text{const} = f(x_{Si}, T)$ ;  $------P_{SiO} = f(x_{Si}, T)$ ;  $------P_{SiO}$ 

| Физико-химические пар | аметры | равновесий в | расплавах | системы | [Si] | Fe – ( | SiO <sub>2</sub> | , ] |
|-----------------------|--------|--------------|-----------|---------|------|--------|------------------|-----|
|-----------------------|--------|--------------|-----------|---------|------|--------|------------------|-----|

| Si,<br>% (по масе) | x <sub>Si</sub> | Значение параметров                |       |       |                                          |       |       |  |
|--------------------|-----------------|------------------------------------|-------|-------|------------------------------------------|-------|-------|--|
|                    |                 | а <sub>[Si]</sub> при <i>T</i> , К |       |       | $\lg P_{O_2}(a_{Si}=1)$ при <i>T</i> , К |       |       |  |
|                    |                 | 1823                               | 1873  | 1973  | 1823                                     | 1873  | 1973  |  |
| 10                 | 0,16            | 0,004                              | 0,008 | 0,014 | 14,50                                    | 14,00 | 12,90 |  |
| 15                 | 0,25            | 0,012                              | 0,020 | 0,049 | 15,05                                    | 14,60 | 13,10 |  |
| 20                 | 0,31            | 0,025                              | 0,050 | 0,100 | 15,47                                    | 14,80 | 13,30 |  |
| 25                 | 0,40            | 0,100                              | 0,130 | 0,200 | 15,88                                    | 15,25 | 13,80 |  |
| 45                 | 0,63            | 0,520                              | 0,530 | 0,560 | 16,55                                    | 15,85 | 14,48 |  |
| 50                 | 0,68            | 0,605                              | 0,610 | 0,620 | 16,6                                     | 15,90 | 14,55 |  |
| 65                 | 0,79            | 0,630                              | 0,640 | 0,750 | 16,65                                    | 16,00 | 14,60 |  |
| 70                 | 0,83            | 0,770                              | 0,780 | 0,800 | 16,70                                    | 16,05 | 14,63 |  |
| 75                 | 0,86            | 0,805                              | 0,810 | 0,820 | 16,75                                    | 16,10 | 14,67 |  |
| 90                 | 0,94            | 0,920                              | 0,925 | 0,930 | 16,80                                    | 16,15 | 14,72 |  |

Physico-chemical parameters of equilibrium in the alloys of the [Si] Fe –  $(SiO_2)$  system

равновесные значения  $\lg P_{O_2} = f(x_{Si}, x_{SiO_2}, T)$  показано на рис. З для температур 1823, 1873, 1973 К в виде линий изоактивностей  $a_{SiO_2}$ . Для сплавов промышленного состава значения  $a_{SiO_2}$  приведены в таблице.

При заданной температуре (T = const) каждому заданному значению  $a_{\text{Si}} = f(x_{\text{Si}}, T)$  соответствует постоянное строго фиксированное значение  $a_{\text{SiO}_2} = f(x_{\text{SiO}_2}, T)$  и  $\lg P_{\text{O}_2} = f(x_{\text{Si}}, T)$ . Для конкретных шлаковых расплавов, например для шлаков системы CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, при T = const параметры  $a_{\text{SiO}_2}, a_{\text{Si}}(x_{\text{[Si]}})$  или % Si),  $\lg P_{\text{O}_2}$  могут быть представлены на диаграмме состояния системы CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (рис. 4, *a*, *б*, *в*) в виде линий изоактивностей  $a_{SiO_2}$  и соответствующих им значений равновесных концентраций кремния в сплаве (Si, %) или значений  $a_{Si}$ .

Точность расчетов зависит от точности определения значений  $a_{SiO_2}$ . Этой проблеме уделялось ранее и в настоящее время большое внимание. Наиболее часто используются данные работ [5 – 7]. Новые экспериментальные исследования [2 – 4] и модельные расчеты [8 – 10] подтверждают качественно сходимость полученных результатов с данными работ [5, 6], однако вряд ли могут претендовать на более высокую точность и достоверность. Поэтому при выборе значений  $a_{SiO_2}$  (по-



Рис. 3. Влияние состава, температуры и параметра  $a_{SiO_2}$  на равновесные значения  $P_{O_2}$  при температурах 1823 К (*a*), 1873 К (*б*) и 1973 К (*b*): —  $-\lg P_{O_2} = f(T, a_{Si}, a_{SiO_2})$ , цифры у кривых – значения  $a_{SiO_2}$ ; ---- значения  $-\lg P_{O_2} = \text{const} = K_{(1)T}$ ; - - - значения  $-\lg P_{O_2} = \text{const}(T)$ для реакции 2C + O<sub>2</sub> = 2CO (5)

Fig. 3. The influence of composition, temperature and  $a_{SiO_2}$  on the equilibrium values of  $P_{O_2}$  at temperatures of 1823 (*a*), 1873 (*b*) and 1973 (*b*) K:  $- - \lg P_{O_2} = f(T, a_{Si}, a_{SiO_2})$ , numbers near curves – values  $a_{SiO_2}$ ; ---- values  $-\lg P_{O_2} = const = K_{(1)T}$ ; --- values  $-\lg P_{O_2} = const(T)$ for the reaction of 2C + O<sub>2</sub> = 2CO(5)



Рис. 4. Активности диоксида кремния в гомогенных шлаковых расплавах CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> при 1823 К (*a*), 1873 К (*б*) и 1973 К (*в*). Цифры у кривых – значения *a*<sub>SiO2</sub>; цифры в квадратных и круглых скобках – равновесные концентрации кремния в металлических расплавах соответственно по данным авторов и по данным работы [6]

Fig. 4. Activity of silicon dioxide in a homogeneous  $CaO - Al_2O_3 - SiO_2$  slag melts at 1823 K (*a*), 1873K ( $\delta$ ) and 1973 K ( $\theta$ ). Numbers near curves – values  $a_{SiO_2}$ ; the numbers in brackets – are the equilibrium concentration of silicon in the metal melts

ложения линий изоактивностей в области гомогенных шлаковых расплавов системы CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>) для получения корректных результатов использованы следующие положения.

*1*. Линии изоактивности ( $a_{SiO_2}$  в расплавах системы CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>), исходящие со стороны двухкомпонентной системы CaO-SiO<sub>2</sub> ( $x_{Al_2O_3} = 0$ ) по своему значению должны соответствовать значениям  $a_{SiO_2}$  в системе CaO-SiO<sub>2</sub> при заданном составе шлака и температуре.

2. Линии зависимости  $a_{SiO_2} = f(x_{SiO} \text{ или SiO}_2, \%$  (по массе)), построенные для равных соотношений ((% по массе) CaO/Al<sub>2</sub>O<sub>3</sub> = 4,0; 2,33; 1,5; 1,0; 0,66; 0,43), исходящие соответственно из точек a, b, c, d, e, f на изотерме насыщения расплава диоксидом кремния на поверхности ликвидуса при заданной температуре, пересекаются практически в одной точке. При температуре 1823 К точке пересечения соответствуют координаты  $a_{SiO_2} = 0,3$ ,  $x_{SiO_2} = 0,48$ ; при 1873 К –  $a_{SiO_2} = 0,24$ ,  $x_{SiO_2} = 0,52$ , при 1973 К –  $a_{SiO_2} = 0,25$ ,  $x_{SiO_2} = 0,45$ . На треугольнике концентраций этим значениям соответствуют прямые линии с равными значениями *a*<sub>SiO2</sub>, разделяющие область гомогенного расплава на два поля: верхнее, где все линии изоактивностей, начинаясь от стороны двухкомпонентной системы CaO-SiO<sub>2</sub>, направляются по мере увеличения в расплаве концентраций Al<sub>2</sub>O<sub>2</sub> и SiO<sub>2</sub> вверх, и нижнее поле, где линии изоактивности закономерно опускаются вниз с выпуклой по отношению к линии равных активностей кривизной.

3. В случаях, когда при заданной температуре внутри области гомогенного расплава выделяется двухфазная область (например, при 1823 °С – жидкость + геленит, жидкость + анортит), линии изоактивности не могут огибать эту область, это можно предположить, считая что на всей изотерме, ограничивающей эту область, в равновесии с геленитом (или анортитом) находится жидкость постоянного состава. На самом деле состав расплава (в том числе и концентрация SiO<sub>2</sub>) изменяется и, соответственно,  $a_{SiO}$  также изменяется.

4. Линии изоактивности при пересечении с изотермой, ограничивающей гетерогенную область, не пересекают эту область. Изменение активностей компонентов в этой области происходит по схеме, представленной для сплавов Fe-Si при 1600 К, с резким изменением активностей компонентов при выделении из расплава кристаллов геленита (или анортита).

С учетом этих положений рассчитанные для промышленных сплавов значения  $a_{SiO_2}$  нанесены на поле гомогенных расплавов в виде линий изоактивностей, каждой из которых соответствует расплав строго заданного состава. Например, расплав, содержащий 75 % Si (ФС 75), должен находиться в равновесии только со шлаками составов, соответствующих линии изоактивности  $a_{SiO_2} = 0,85$ . При отклонении состава шлака от этой линии неизбежно должен изменяться состав ферросилиция, в том числе за счет реакций (2), (4). При концентрации кремния больше равновесной должны протекать реакции силикотермического восстановления CaO и Al<sub>2</sub>O<sub>2</sub>:

$$\mathrm{Si} + 2\mathrm{CaO} = 2\mathrm{Ca} + \mathrm{SiO}_2, \qquad (9)$$

$$[Si] + 2/3Al_2O_3 = 4/3Al + SiO_2.$$
(10)

В присутствии углерода газовая фаза будет состоять, в основном, из монооксида углерода, содержание кислорода в газовой фазе при температурах 1773, 1823, 1873 и 1973 К и давлении  $P_{ofut} = 1$  ат составит соответственно  $P_{O_2} = 1,71 \cdot 10^{-16}$ ; 2,66 $\cdot 10^{-16}$ ; 4,04 $\cdot 10^{-16}$ ; 8,7 $\cdot 10^{-16}$ , ( $-\lg P_{O_2} = 15,76$ ; 15,57; 15,40; 15,06) (рис. 3), следовательно при 1973 К углеродотермическим процессом могут быть получены все промышленные сплавы ( $P_{O_2}$  [C<sub>rn</sub>]  $< P_{O_2}$  [Si]) при значениях  $a_{SiO_2} \ge 0,85$ ; при 1873 К – сплавы с содержанием кремния менее 65 %, а при  $a_{SiO_2} \ge 0,4$  – сплавы с содержанием кремния менее 25 %; при  $a_{SiO_2} \ge 0,1$  – сплавы, содержащие менее 20 % Si.

При 1873 К ( $P_{O_2[C_{rs}]} = -16,7$ ) при значениях  $a_{SiO_2} \approx 1$  могут быть получены лишь сплавы с содержанием кремния менее 25 %, при  $a_{SiO_2} = 0,4$  – с содержанием примерно 20 % Si; при  $a_{SiO_2} = 0,2$  – 15 % Si; при  $a_{SiO_2} = 0,05$  – 10 % Si. При более низких температурах могут получаться углеродотермическим восстановлением лишь низкокремнистые сплавы (Si < 15 %) под кислым шлаком ( $a_{SiO_2} > 0,5$ ). Минимальный уровень температур, при которых могут быть получены сплавы ФС 45 и ФС 50, составляет примерно 1920 К.

Интенсификация процесса возможна за счет понижения концентрации кислорода в газовой фазе (вакуум, разбавление), либо за счет изменения состава шлака и смещения границы насыщения шлака диоксидом кремния в сторону более низких температур, изменения области гомогенности расплава при заданной температуре и положения линий изоактивностей, что возможно за счет введения в шлак компонентов как с явно выраженными кислотными свойствами (например TiO<sub>2</sub>), так и основными (K<sub>2</sub>O, Na<sub>2</sub>O, BaO).

Выводы. Проанализированы данные по активности кремния в расплавах Fe-Si и Fe-Si-C. На диаграмме состояния системы Fe-Si в поле гомогенных расплавов представлены зависимости  $a_{Si} = f(x_{Si}, T)$  в интервале температур 1600 – 2000 К и концентраций кремния  $x_{si} = 0,2 - 0,95$ , а также в расплавах Fe-Si-C, насыщенных углеродом, от  $x_{si} = 0.05$  вплоть до линии выделения из расплава карбида кремния. Определены значения  $-\lg P_{\Omega_2}$ , равновесные с расплавами заданного состава при температурах 1823, 1873 и 1973 К. Показано влияние активности диоксида кремния в шлаковом расплаве на изменение равновесных характеристик. Проанализированы литературные данные по исследованию активности диоксида кремния в шлаках системы CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>. Построены корректные зависимости  $a_{SiO_2} = (x_{SiO_2}, x_{CaO}, x_{Al_2O_3})$  в области гомогенных

расплавов на изотермических разрезах треугольника концентраций Гиббса при температурах 1823, 1873, 1973 К. Показано, что при 1973 К методом углеродотермического восстановления могут быть получены все промышленные сплавы при значениях  $a_{SiO_2} > 0,8$ ; а при 1873 К и  $a_{SiO_2} \approx 1$  могут быть получены сплавы, содержащие  $\leq 25 \%$  Si; при более низких температурах могут получаться лишь низкокремнистые сплавы (< 20 % Si).

## БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Эллиот Д.Ф., Глейзер М., Рамакришна В. Термохимия сталеплавильных процессов. – М.: Металлургия, 1969. – 252 с.
- Зубов В.Л., Гасик М.И. Электрометаллургия ферросилиция. – Днепропетровск: Системные технологии, 2002. – 704 с.
- Толстогузов Н.В. Теоретические основы и технология плавки кремнистых и марганцевых сплавов. – М.: Металлургия, 1992. – 239 с.

- Якушевич Н.Ф., Галевский Г.В. Взаимодействие углерода с оксидами кальция, кремния, алюминия. – Новокузнецк: изд. СибГИУ, 1999. – 250 с.
- Rein R.H. Activities in the Liquid Solution SiO<sub>2</sub> CaO MgO -Al<sub>2</sub>O<sub>3</sub> at 1600 °C // Trans TMS-AJME. 1965. Vol. 233. P. 415 - 425.
- Kay D.A.R., Taylor J. Activities of Silica in the Lime + Aluminii + Silica System // Trans Faraday Soc. 1960. Vol. 56. P. 1372 – 1386.
- 7. Атлас шлаков: справочное издание. М.: Металлургия, 1985. 208 с.
- Зайцев А.И., Могутнов Б.М., Шахназов Е.Х. Физическая химия металлургических шлаков. – М.: Интерконтакт Наука, 2008. – 352 с.
- Hiroki O. Activities in CaO SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub> slags and deoxidation equilibria of Siand Al // Metallurgical and materials processing. 1996. Vol. 27. P. 943 – 953.
- 10. Якушевич Н.Ф., Кондратьев Д.В. Термодинамика первичных шлаков в системе CaO – Al<sub>2</sub>O<sub>3</sub> – SiO<sub>2</sub> // Изв. вуз. Черная металлургия. 2000. № 2. С. 4 – 9.

Поступила 10 февраля 2015 г.

IZVESTIYA VUZOV. CHERNAYA METALLURGIYA = IZVESTIYA. FERROUS METALLURGY. 2015. VOL. 58. No. 5, pp. 316-321.

## ANALYSIS OF PHASE AND CHEMICAL EQUILIBRIUM IN THE SYSTEM OF MELT (Fe-Si-C) – SLAG (CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>) – GAS (O<sub>2</sub>-SiO-CO)

Yakushevich N.F., Dr. Sci. (Eng.), Professor of the Chair "Non-ferrous metallurgy and chemical engineering" Polyakh O.A., Cand. Sci. (Eng.), Assist. Professor the Chair "Non-ferrous metallurgy and chemical engineering" Galevskii G.V., Dr. Sci. (Eng.), Head of the Chair "Nonferrous metallurgy and chemical engineering", Director of the Institute of Metallurgy and Materials

(kafcmet@sibsiu.ru)

**Tyazhina A.A.**, Postgraduate the Chair "Non-ferrous metallurgy and chemical engineering"

Siberian State Industrial University (42, Kirova str., Novokuznetsk, Kemerovo Region, 654007, Russia)

- Abstract. The equilibrium compositions of high-silicon metal melts, which coexist with the slag of the CaO–Al $_2O_3$ –SiO $_2$  system, have been determined. Dependences of the activity of silicon in iron-silicon melts have been represented as lines of isoactivities on the Fe-Si state diagram. Equilibrium with the metal melt relationships  $\lg P_{O_2} = f(x_{Si}, T)$  for temperatures of 1823, 1873, 1973 K and influence of  $a_{SiO_2} = f(x_{Si}, T)$  on the equilibrium composition of the gas phase  $(P_{O_2} = f(x_{Si}, T, a_{SiO_2}))$ have been calculated. Data on the activity of silicon dioxide in the CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> slag system have been analyzed and corrected. It has been shown that each alloy of the given composition at a fixed temperature corresponds to only one value of  $a_{SiO_2}$ , which is represented on the concentration diagram of the lines of isoactivity. It has been established that in the presence of carbon all high-silicon alloys can be obtained at temperatures of  $T \ge 1973$  K at the values of  $a_{SiO_2} > 0.8$ ; at 1873 K and  $a_{SiO_2} > 0.9$  can be obtained only alloys with silicon content, which is less than 25 %, and the decrease of  $a_{SiO_2}$  up to 0.4 to less than 20 %. At lower temperatures ( $\leq$  1823 K) under acidic slag ( $a_{SiO_2} > 0.5$ ) only low-silicon alloys can be obtained (< 15 % Si).
- *Keywords*: silicon alloys, molten slag, activity, phase and chemical equilibrium, carbothermal reduction, concentration triangle.

**DOI:** 10.15825/0368-0797-2015-5-316-321

## REFERENCES

- Elliott John F., Gleiser Molly, Ramakrishna V. Thermochemistry for Steelmaking. Addison – Wesley Inc. 1963. (Russ.ed.: Elliott J., Gleiser M., Ramakrishna V. *Termokhimiya staleplavil'nykh protsessov*. Moscow: Metallurgiya, 1969. 252 p.).
- Zubov V.L., Gasik M.I. *Elektrometallurgiya ferrosilitsiya* [Electrometallurgy of ferrosilicon]. Dnepropetrovsk: Sistemnye tekhnologii, 2002. 704 p.
- Tolstoguzov N.V. *Teoreticheskie osnovy i tekhnologiya plavki kremnistykh i margantsevykh splavov* [Theoretical basis and the melting technology of silicon and manganese alloys]. Moscow: Metallurgiya, 1992. 239 p. (In Russ.).
- Yakushevich N.F., Galevskii G.V. Vzaimodeistvie ugleroda s oksidami kal'isiya, kremniya, alyuminiya [Interaction of carbon with calcium oxide, silicon, aluminum]. Novokuznetsk: izd. SibGIU, 1999. 250 p. (In Russ.).
- Rein R.H. Activities in the Liquid Solution SiO<sub>2</sub>-CaO-MgO-Al<sub>2</sub>O<sub>3</sub> at 1600 °C. Trans TMS-AJME. 1965. Vol. 233, pp. 415–425
- Kay D.A.R., Taylor J. Activities of Silica in the Lime + Aluminii + Silica System. *Trans Faraday Soc.* 1960. Vol. 56, pp. 1372–1386.
- Schlackenatlas. Verein Deutscher Eisenhüttenleute. Verlag Stahleisen. 1981. 282 p. (Russ.ed.: Atlas shlakov. Sprav. Moscow: Metallurgiya, 1985. 208 p.)
- Zaitsev A.I., Mogutnov B.M., Shakhnazov E.Kh. *Fizicheskaya khimiya metallurgicheskikh shlakov* [Physical chemistry of metallurgical slag]. Moscow: Interkontakt Nauka, 2008. 352 p. (In Russ.).
- Hiroki O. Activities in CaO–SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> slags and deoxidation equilibria of Siand Al. *Metallurgical and materials processing*. 1996. Vol. 27, pp. 943–953.
- Yakushevich N.F., Kondrat'ev D.V. Thermodynamics of first slag in CaO – Al<sub>2</sub>O<sub>3</sub> – SiO<sub>2</sub> system. *Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy*. 2000, no. 2, pp. 4–9. (In Russ.).

Received February 10, 2015