УДК 621.7.011

Н.С. Сурикова^{1, 2}, *Е.А. Корзникова*³

¹ Томский государственный архитектурно-строительный университет ² Институт физики прочности и материаловедения СО РАН (г. Томск) ³ Институт проблем сверхпластичности металлов РАН (г. Уфа)

МЕХАНИЗМЫ СТРУКТУРНОЙ ФРАГМЕНТАЦИИ В МОНОКРИСТАЛЛАХ TiNi(Fe, Mo) ПРИ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

Аннотация. Проведено электронно-микроскопическое исследование структурных превращений в монокристаллах сплавов TiNi(Fe, Mo) при интенсивной пластической деформации холодной прокаткой и всестороннем прессовании в зависимости от степени деформации. Проанализированы микромеханизмы пластической деформации и фрагментации при формировании нанокристаллических и квазиаморфных состояний.

Ключевые слова: сплавы с памятью формы, монокристаллы, мартенситные превращения, механическое двойникование, структурная фрагментация, интенсивная пластическая деформация.

MECHANISMS OF STRUCTURAL FRAGMENTATION IN SINGLE TINI(Fe, Mo) CRYSTALS UNDER SEVERE PLASTIC DEFORMATION

Abstract. Transmission electron microscopy study of the structural transformations in single crystals of TiNi(Fe, Mo) alloys under severe plastic deformation by cold rolling and all-round pressure has been carried out depending on degree of deformation. Micromechanisms of plastic deformation and fragmentation during formation of nanocrystalline and quasi-amorphous states have been analyzed.

Keywords: shape memory alloys, single crystals, martensitic transformations, mechanical twin-ning, structure fragmentation, severe plastic deformation.

Металлические материалы в ультрамелкозернистом (УМЗ) и нанокристаллическом (НК) состояниях обладают уникальным комплексом механических свойств [1], изучение которого представляет как научный, так и практический интерес. Наиболее эффективным способом получения объемных НК материалов является интенсивная пластическая деформация (ИПД), осуществляемая холодной прокаткой, ковкой, равноканальным угловым прессованием (РКУП) и различными комбинациями этих методов в сочетании с промежуточными термическими обработками. Несмотря на большое количество работ [1 - 3], опубликованных в последние годы и посвященных изучению эволюции структуры и последовательности фазовых превращений в сплавах никелида титана при ИПД, микромеханизмы деформационной фрагментации и аморфизации, без изучения которых невозможно эффективно моделировать и конструировать нанокристаллические ансамбли, еще до конца не изучены.

Исследование механизмов пластической деформации и их ориентационной зависимости в монокристаллах TiNi показало [4, 5], что двойникование в упорядоченной В2 фазе является одним из основных механизмов деформации. Появление двойникования в упорядоченной матрице обусловлено структурно-фазовой нестабильностью кристаллической В2 решетки никелида титана в полях высоких локальных напряжений. Формирование двойников и малоугловых полос локализованной деформации (ПЛД) в работах [6 – 10] было объяснено действием механизма локальных «прямых плюс обратных» (превращения идут последовательно одно за другим или одновременно) $B2 \rightarrow B19' \rightarrow B2$ мартенситных превращений, происходящих в сплавах TiNi под нагрузкой.

Настоящая работа является продолжением электронно-микроскопических исследований [9, 10] по выяснениию роли локализации деформации и механического В2 двойникования в процессах формирования НК и квазиаморфного состояний в сплавах никелида титана при ИПД.

Экспериментальные исследования проводили на монокристаллах двух сплавов TiNi(Fe, Mo), выращенных по методу Бриджмена из заготовок, выплавленных с использованием губчатого титана и никеля марки Н1. Кристаллы гомогенизировали при температуре *T* = 1273 К в течение 20 ч с последующей закалкой в ледяной воде. После закалки все монокристаллы имели структуру В2 фазы с кристаллической решеткой типа CsCl и содержали небольшое (5 – 7 %) количество крупных частиц на основе карбидов и оксидов титана. Температуры начала и конца (индексы «н» и «к») прямого и обратного мартенситных превращений сплава I, определенные по кривым температурной зависимости электросопротивления, составляли $M_{\mu} = 237$ К, $M_{\rm k} = 216$ К, $A_{\rm H} = 228$ К, $A_{\rm k} = 273$ К, а сплава $II - M_{\rm H} = 266$ К, $M_{\rm k} = 249$ К, $A_{\rm H} = 271$ К, $A_{\rm k} = 299$ К. Ориентацию кристаллов определяли рентгенографическим способом на установке ДРОН-3.

В качестве ИПД использовали холодную прокатку и всестороннее *abc*-прессование. Прокатку образцов монокристалла сплава *I* в форме пластин шириной 10 мм осуществляли при комнатной температуре со степенью относительного обжатия (ε) за один проход 2 – 3 %. Максимальная величина накопленной деформации при прокатке составила примерно 80 %. Кристаллографические индексы плоскости и направления прокатки имели значения (135) и [053] соответственно.

Многократное одноосное прессование со сменой оси деформации проводили на кристалле сплава II также при комнатной температуре в интервале скоростей $10^{-3} - 10^{-2}$ с⁻¹. В эксперименте были использованы пресс-формы, позволяющие сохранять первоначальную форму кристалла для последующих циклов прессования. Каждый цикл включал однократное одноосное прессование, для следующего цикла ось деформации поворачивали на 90°. Образцы для *аbc*-прессования имели форму, близкую к форме куба с гранями, параллельными плоскостям {100} В2 фазы.

Тонкую структуру деформированных образцов исследовали методом фольг на просвет на электронном микроскопе ЭМ-125 с системой наклона образцов на углы $\pm 60^{\circ}$ при ускоряющем напряжении 125 кВ и микроскопе СМ-12 Philips при ускоряющем напряжении 120 кВ. Фольги для электронно-микроскопических исследований готовили методом струйной электрополировки в 20 %-ом растворе серной кислоты в метаноле при напряжении на электродах 60 В.

Характерные дефекты структуры (рис. 1), формирующиеся при малых степенях деформации при холодной прокатке в кристаллах сплава I, детально описаны в работе [6]; это – малоугловые ПЛД (углы разориентации до 10°) с габитусом мартенсита В19′ (плоскости $\{0,4,0,9,0,2\}_{B2}$) (рис. 1, δ , ε), механические двойники В2 фазы с габитусными плоскостями $\{113\}_{B2}$

(рис. 1, *г*, *д*) и зоны локализованного дислокационного скольжения *a* <100> {011} и *a* <100> {001}. Внутри и в окрестности ПЛД и двойников обнаруживается высокая ($10^{10} - 10^{11}$ см⁻²) скалярная плотность дислокаций. Особенностью дефектной структуры является состояние с высокими непрерывными разориентировками кристаллической решетки В2 фазы и высокими локальными внутренними напряжениями. Локальные напряжения оценивали по формуле [6 – 8]

$$\sigma_{\text{лок}} \approx \chi_{ij} E \frac{\Delta h}{2},$$

где χ_{ij} – кривизна кристаллической решетки; E – модуль упругости первого рода (модуль Юнга); Δh – характерные размеры зоны дислокационного заряда, которые можно принять равными толщине фольги (0,1-0,2 мкм).

В образцах, прокатанных до є \approx 7 %, кривизна кристаллической решетки в зонах механического двойникования составляла 10 – 20 °/мкм, что при $\Delta h \approx 0,2$ мкм соответствует $\sigma_{\text{пок}} \approx E/60 \div E/30$.

С ростом степени относительного обжатия двойникование в аустенитной фазе становится преобладающим механизмом деформации, увеличиваются объем материала, испытавшего двойникование, и число кристаллографических систем двойников (рис. 2). В отдельных областях образца из структуры, представленной на рис. 1, *г*, формируется «елочная» структура путем дальнейшего {113}-двойникования как областей матрицы, так и уже существующих двойников В2 фазы (рис. 2, δ). Размер фрагментов двойников в такой структуре составляет 50 – 100 нм, что говорит об образовании здесь НК состояния. Внутри фрагментов наблюдается более тонкая ячеистая субструктура, которая видна в темном поле при больших увеличениях.

Рис. 1. Металлографическая картина полос деформации в монокристалле сплава *I* после прокатки при ε ≈ 7 % (*a*); малоугловая ПЛД с габитусом, близким к габитусу мартенсита, и внутренней субструктурой (*б*); микродифракционная картина от ПЛД и окружающего ее объема (*в*); пачка (131)-двойников В2 фазы (*г*); микродифракционная картина (*д*) (зона [111] матрицы параллельна [001] зоне (131)-двойника)

Рис. 2. Множественное В2-двойникование в монокристаллах сплава *I* после прокатки до степени деформации 15 %: *а* – две системы {113}-двойников в матрице (темное поле в рефлексе двойника одной из систем); *б* – «елочная» структура (светлое поле); *в* – микродифракционная картина от двойников и матрицы к поз. *б*; *с* – схема микродифракции к поз. *в* (Δ – рефлексы в [001] зоне матрицы; О – рефлексы в [111] зоне первой системы {113}-двойников; ● – рефлексы в [111] зоне второго {113}-двойника)

Дальнейшее увеличение степени деформации (рис. 3) сопровождается формированием в объемах матрицы (зона <111>) и {113}-двойников (зона <001>) разных структурно-фазовых состояний. Азимутальное размытие рефлексов и в зонах матрицы, и в зонах двойников В2 фазы (рис. 3, δ , c, e), свидетельствует о наличии в этих областях материала слабо разориентированной субструктуры, что связано с интенсивным действием дислокационных механизмов деформации. Высокая плотность дислокаций, неоднородное напряженное состояние с высокими локальными напряжениями приводят к образованию, во-первых, объемов новых промежуточных фазовых состояний, характеризующихся параметрами решетки, отличными от параметров аустенита и мартенсита B19' (имеющих промежуточные значения параметров). Об этом свидетельствует сложная форма рефлексов (рис. 3, ж). Вовторых, появляется разупорядоченная или слабоупо-

Рис. 3. Структура кристаллов сплава I после прокатки до степени деформации 45 %:

a, *b*, *d* – темнопольные изображения в рефлексе двойников (*a*) и матрицы (*b*, *d*); *б*, *c*, *e* – микродифракционные картины, соответствующие поз. *a*, *b*, *d*; *ж*, *s* – форма рефлексов (поз. *б*)

рядоченная (на дифракционных картинах отсутствует рефлекс $<010>_{B19'}$) (рис. 3, *з*) и упорядоченная мартенситная фаза B19' (рис. 3, *г*). В третьих, формируются двухдиффузные кольца, соответствующие отражениям $<110>_{B2}$ аустенита и $<010>_{B19'}$ мартенсита (рис. 3, *б*, *г*). Последнее свидетельствует о дальнейшем диспергировании структуры и увеличении объемной доли мартенситной фазы. Судя по наличию текстурных максимумов на диффузных кольцах, даже после высоких степеней прокатки (рис. 3, *e*; рис. 4) в материале сохраняется преимущественно сформировавшаяся на начальных стадиях деформации ориентация кристаллитов.

В процессе прокатки до высоких (70 - 80 %) степеней деформации происходит обратное мартенситное превращение В19′ → В2 (подобное обнаружено в работах [10, 11]): на дифракционных картинах (рис. 4), полученных от деформированного материала, присутствуют диффузные кольца, соответствующие только отражениям аустенитной фазы, причем наблюдается кольцо сверхструктурного отражения <100>_{в2}. Последнее говорит о том, что в отдельных объемах сильно деформированного материала существует достаточно высокая степень порядка. По оценке, проведенной по полуширине диффузного кольца {110}_{в2}, минимальный размер *d* кристаллита составляет примерно 40 - 50 Å. При таком размере кристаллитов относительный объем, занятый границами, которые имеют аморфную структуру, составляет примерно 30 – 40 %. Следовательно, состояние материала при прокатке до деформаций 80 % можно считать аморфно-кристаллическим.

Исследование деформированной структуры кристаллов сплава ІІ после всестороннего прессования показало (рис. 5), что на начальных стадиях деформации большую роль в размножении малоугловых (до 7°) разориентировок в структуре играет прямое плюс обратное мартенситное $B2 \rightarrow B19' \rightarrow B2$ превращение, происходящее под напряжением, с сохранением границ двойниковой субструктуры мартенсита. На рис. 5, а приведено темнопольное изображение двух систем малоугловых полос, а на рис. 5, б соответствующая им микродифракционная картина с зоной [001] аустенитной фазы. Для лучшего понимания природы формирования ПЛД, имеющих В2 структуру, на рис. 5, в показана схема пересечения двух систем двойников (А и В) мартенсита В19' с образованием двойников третьего типа (С), а на рис. 5, г для удобства анализа показана микродифракционная картина от плоскости (100)_{р10} мартенсита (существовавшего под напряжением), которая по ориентационному соотношению параллельна (001)_{в2} плоскости В2 фазы. Кристаллографический анализ показал, что двойники мартенсита B19' <011> типа II (A) пересекают ранее образовавшиеся двойники $\{011\}$ типа I (B). Необходимым условием для образования двойника <011> типа II (С) является то, что плоскости К₁ двойников А и С пересекают плоскость К₁ двойника В в одном направлении и имеют одинаковые величину и направление вектора сдвига η (рис. 5, в). Границы двойников сохраняются в структуре аустенита после обратного $B19' \rightarrow B2$ мартенситного превращения, очевидно потому, что они провзаимодействовали с дис-

Рис. 4. Формирование аморфно-кристаллического состояния в монокристаллах сплава *I* после холодной прокатки до степени деформации 70 – 80 %:

а – темное поле в текстурном максимуме на кольце; *б* – микродифракционная картина к поз. (*a*); *в* – светлопольное изображение; *г* – темное поле в текстурном максимуме 110_{в2} и микродифракционная картина с этого участка

Рис. 5. Малоугловые ПЛД в В2 фазе, сформировавшиеся при всестороннем прессовании в результате прямого плюс обратного мартенситного превращения из двойников мартенсита при $\epsilon \approx 14 \%$

локационным скольжением в окружающей их матрице и потеряли способность к движению «точно назад», а материал бывших двойников мартенсита при этом приобрел небольшую разориентацию. На рис. 5, ∂ , e приведены темные поля в рефлексе 110 аустенита (рис. 5, δ) при разных углах наклона фольги α в колонне микроскопа, которые показывают малоугловой характер ПЛД.

В отличие от прокатки при всестороннем прессовании в деформированной структуре кристаллов наблюдается два типа двойников В2 фазы с габитусными плоскостями {113} и {411}. Развитие множественного В2 двойникования также приводит к интенсивной фрагментации материала и образованию НК структуры. При деформациях 50 % в зонах матрицы и двойников также, как при прокатке, доминирует мартенситная фаза, часто сдвойникованная, о чем свидетельствует анализ микродифракционных картин. Между мартенситом и материалом матрицы или В2 двойников существуют

стандартные кристаллографические соотношения. При больших степенях деформации в структуре материала происходит обратное мартенситное превращение $B19' \rightarrow B2$ и формируется квазиаморфное состояние, подобное состоянию, показанному на рис. 4.

Выводы. Неустойчивость кристаллической решетки аустенитной фазы в сплавах TiNi(Fe, Mo) в полях высоких локальных напряжений в предмартенситной области температур, где происходит снижение модулей упругости, приводит к развитию новых нетрадиционных коллективных мод деформации и переориентации решетки, таких как механическое двойникование в В2 фазе и формирование ПЛД путем B2 → B19' → B2 превращений. По указанным механизмам наряду с дислокационным скольжением происходит интенсивная фрагментация в сплавах никелида титана, что приводит к формированию НК и квазиаморфных состояний. Результаты настоящей работы и исследований [10, 11] показывают, что при всех способах ИПД переход в квазиаморфное состояние в сплавах никелида титана сопровождается обратным мартенситным превращением.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы. – М.: ИКЦ «Академкнига», 2007. – 398 с.
- Pushin V.G., Valiev R.Z., Yurchenko L.I. Processing of nanostructured TiNi-shape memory alloys: methods, structures, properties, application // J. Phys. IV France. 2003. Vol. 112. P. 659 – 662.
- **3.** Khmelevskaya I. Yu., Prokoshkin S.D., Dobatkin S.V. et al. // Mater. Scien. Eng. A. 2006. Vol. 438-440. P. 472 475.
- **4.** Сурикова Н.С., Чумляков Ю.И. // Физика металлов и металловедение. 2000. Т. 89. № 2. С. 98 107.
- 5. Сурикова Н.С., Чумляков Ю.И. // Физическая мезомеханика. 2000. Т. 3. № 1. С. 93 – 102.
- 6. Tyumentsev A.N., Surikova N.S., Litovchenko I.Yu. et al. // Acta mater. 2004. Vol. 52. № 7. P. 2067 2074.
- 7. Сурикова Н.С., Тюменцев А.Н., Лысенко О.В. // Изв. вуз. Физика. 2009. Т. 52. № 6. С. 58 – 67.
- Сурикова Н.С., Тюменцев А.Н., Лысенко О.В. и др. // Физика металлов и металловедение. 2006. Т. 101. № 3. С. 247 – 254.
- **9.** Сурикова Н.С., Тюменцев А.Н., Корзникова Г.Ф. // Перспективные материалы. 2009. Спец. выпуск 7. С. 305 – 309.
- Сурикова Н.С., Клопотов А.А., Корзникова Е.А. // Физика металлов и металловедение. 2010. Т. 110. № 3. С. 285 – 294.
- Зельдович В.И., Фролова Н.Ю., Пилюгин В.П. и др. // Физика металлов и металловедение. 2005. Т. 99. № 4. С. 90 – 100.

© 2013 г. Н.С. Сурикова, Е.А. Корзникова Поступила 17 декабря 2012 г.