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Аннотация. Развитие металлургии предусматривает дальнейшее увеличение объемов и совершенствование процессов выплавки стали за 

счет внедрения различных прогрессивных ресурсо- и энергосберегающих технологий. Основные и наиболее универсальные управля-
ющие воздействия, влияющие на ход и технико-экономические показатели процесса, неразрывно связаны с оптимизацией параметров 
технологии. Оптимизация параметров технологического процесса ориентирована на достижение наилучших результатов в области 
производительности, качества продукции и снижения затрат ресурсов. Это достигается посредством регулярного мониторинга и анализа 
ключевых показателей, а также внесения необходимых корректировок в управление процессом. Удачное сочетание указанных факторов 
способствует максимизации производственной эффективности и повышению конкурентоспособности продукции на рынке. Для расчета 
статических режимов процесса целесообразно использование ресурсов математического моделирования и разработки инструментальной 
системы. При создании статической модели расчета электросталеплавильный процесс рассматривали как сложную термодинамическую 
систему, в которую поступают конденсированные и газообразные входные среды, а конечными продуктами являются металл, шлак и газ. 
Расчет статических режимов электросталеплавильного процесса, осуществляемый на основе материального и теплового балансов, бази-
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Abstract. Development of metallurgy provides for further increase and improvement of steel production volumes through the introduction of various 

advanced resource- and energy-saving technologies. The main and most universal control actions that affect the course and technical-economic indi-
cators of the process are inextricably linked to the optimization of technology parameters which is focused on achieving the best results in the field 
of productivity, product quality and reduction of resource costs. This is achieved through the regular monitoring and analysis of key indicators, as 
well as making necessary adjustments to process management. A successful combination of these factors contributes to maximizing the production 
efficiency and increasing the competitiveness of products on the market. To calculate the process static parameters, it is advisable to use the resources 
of mathematical modeling and development of an instrumental system. When creating a static calculation model, the electric steelmaking process was 
considered as a complex thermodynamic system into which condensed and gaseous input media enter, and the final products are metal, slag and gas. 
Calculation of the static modes of the electric steelmaking process is carried out on the basis of calculations of material and thermal balances based 
on the laws of mass and energy conservation relative to the components of a heterogeneous system. The solution of the optimization problem based 
on formal methods involves selection of various criteria and setting a system of restrictions (requirements for metal composition; ranges of change 
in the cost of components of charge materials and system state parameters; compliance with the law of mass conservation at the level of fluxes, 
substances and elements; compliance with the law of energy conservation). A feature of the developed method of mathematical modeling and optimi-
zation of the electric steelmaking process is the systematic solution of a set of interrelated optimization problems to determine the optimal conditions 
for the processes in the metallurgical system and the optimal solutions for implementation of electric smelting technology. 
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 Introduction

Federal programs for the technological develop-
ment of  metallurgy currently call for further growth in 
steel output and for continued improvement of steel-
making processes through the adoption of advanced 
resource- and energy-saving technologies. A central 
objective of modern steelmaking is to produce a molten 
metallic semiproduct with a specified chemical compo-
sition and temperature while minimizing material and 
energy consumption  [1 ‒ 5]. The most universal control 
actions affecting both process evolution and its technical 
and economic indicators are typically inseparable from 
the optimization of technology parameters [6 ‒ 8]. This, 
in turn, necessitates solving problems related to establish-
ing optimal operating modes for electric arc furnaces and 
forecasting the key indicators of electric melting [5 – 8]. 

Addressing these tasks benefits from mathemati-
cal modeling and from developing an instrumental sys-
tem for calculating the static modes of the process, i.e., 
for analyzing the process at the level of input–output 
flows [9 – 12]. 

Static-mode calculation methods enable, among other 
things, determination of the material and thermal balan
ces1 [13 – 15]; evaluation of limiting energy capabilities, 
identification of thermodynamic feasibility limits and 
interaction conditions for components within a metallur-
gical unit, and selection of the most effective components 
of the input flow to obtain metal with specified properties 
while achieving optimal technical and economic indica-
tors [13 – 16].

 Methods

When developing the static calculation model, 
the  electric steelmaking process was considered as 
a complex thermodynamic system into which condensed 

and gaseous input media are supplied, while the final 
products are metal, slag, and gas  [17 ‒ 20]. Depending 
on the selected technological route, the condensed input 
flows include: metal charge (liquid or pig iron, steel scrap); 
solid oxidizers (sinter, iron ore, pellets); slag-forming 
materials (lime, limestone, fluorspar); carburizers (metal-
lurgical coke, coke breeze, dust from dry coke quenching 
units, electrode scrap, etc.); and ferroalloys. The gaseous 
input flows are oxygen and natural gas [21 – 23].

Accordingly, the defining parameters of the input flows 
are: K – the total number of flows; K f, K g and ,  – 
the  number and mass of condensed and gaseous flows, 
respectively (the subscripts f and g denote condensed and 
gaseous flows);  and  – the number of substances in 
the k-th flow; ,  and ,  – the temperature (°C) and 
density (kg/m3) of the flows; |Rm|k , {Rm}k  – the content 
of substance Rm in the k-th flow, %. 

The output flows are characterized by the following 
parameters: Gm , Gsl , Gg  – the mass of metal, slag, and 
gas; tm , tsl , tg – the temperature of metal, slag, and gas, °C; 
Nm , Nsl , Ng – the number of substances in the correspon
ding phases; [Rn ], (Rn ), {Rn } – the content of substance 
Rn in the metallic, slag, and gas phases, respectively.

In defining the system parameters, it was assumed 
that substances Rm and Rn are elements of the set   and 
may be present in different phases in the form of various 
compounds Eix Ejy , composed of elements Еi and Ej from 
the elemental set x. With the input flows, the following 
compounds may enter the reactor: condensed phase ‒ Fe, 
C, Mn, Si, S, P, Al, Ni, Mo, W, V, Ti, Cr, B, Cu, FeO, 
Fe2O3 , Al2O3 , CaO, SiO2 , MgO, MnO, P2O5 , CaS, CaF2 , 
NiO, V2O5 , Cr2O3 , TiO2 , MoO2 , WO2 , CuO, B2O3 ; gase
ous phase – H2O, CO2 , O2 , CH4 , CO, N2 , H2 . The ele-
ments forming these substances are: Fe, C, O, Mn, Si, S, 
P, Al, Ca, Mg, H, F, Ni, Ti, V, Cr, N, B, Cu, Mo, W.

Calculation of the static modes of the electric steel-
making process involves determining the consumption 
rates of charge materials required to achieve the specified 
metal parameters and metal temperature. The calculations 
are based on balance models and thermodynamic equa-
tions. The calculation scheme is shown in Fig. 1.

1 Simulation model of the electric steelmaking shop of the Che-
lyabinsk Metallurgical Plant. URL: https://www.anylogic.ru/resources/
case-studies/chelyabinsk-metallurgical-plant-uses-a-simulation-model-
electric-furnace-melting-shop/

руется на законах сохранения массы и энергии относительно составляющих гетерогенной системы. Решение оптимизационной задачи 
на основе формальных методов предусматривает выбор различных критериев и задание системы ограничений (требования к составу 
металла, диапазоны изменения расходов компонентов шихтовых материалов и параметров состояния системы, соблюдение закона сохра-
нения массы на уровне потоков, веществ и элементов, соблюдение закона сохранения энергии). Особенностью разработанного метода 
математического моделирования и оптимизации электросталеплавильного процесса является системное решение комплекса взаимос-
вязанных оптимизационных задач по определению оптимальных условий протекания процессов в металлургической системе и опти-
мальных режимов реализации технологии электроплавки. 
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Specification of the initial data includes entering 
the  following information: the input flow parameters; 
the process parameters; and the element distribution coef-
ficients among phases.

The adopted process parameters are: tm , tsl , tg – phase 
temperatures, °С, Qloss ‒ heat losses to the environment, 
Qdrop – metal losses with metal droplets; ηCO – the degree 
of carbon oxidation to CO; ηFeO – the degree of iron oxi-
dation to FeO; α – the oxygen utilization degree.

The element distribution coefficients among phases 
are specified on the basis of experimental data within 
the prescribed ranges of variation of the input and output 
flow parameters. 

The following technical and economic indicators are 
used: E – process energy intensity, kW·h/t; С – produc-
tion cost, RUB/t; PU – unit productivity, t/h; gk – specific 
material consumption, kg/t. 

Once all required parameters have been specified, 
an  initialdata table for the input flows is generated. 
The input information includes the temperature, density, 

and flow rate of the k-th input flow. The procedure also 
requires the chemical composition of the charge materials 
to be specified. For all calculation variants, the software 
provides a baseline composition for the condensed and 
gaseous input flows, as well as for the volatile compo-
nents of the charge; if necessary, this composition can be 
modified by the user.

 Results and discussion

The static modes of the electric steelmaking process 
are calculated from the material and thermal balances, 
formulated on the basis of the laws of conservation 
of  mass and energy for the components of a heteroge-
neous system. The calculation procedure for the material 
and thermal balances is outlined in Fig. 2.

At the level of input–output flows, the overall material 
balance for the system can be written as:

Fig. 1. Calculation scheme of electric steelmaking process

Рис. 1. Схема расчета электросталеплавильного процесса
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When phase separation is taken into account, the mate-
rial-balance relationship can be expressed in the follow-
ing form:

The total mass of substances entering the furnace with 
the input flows is:

The mass of substances leaving the system with the 
output flows is defined as the sum of the masses con-
tained in the metallic, slag, and gas phases:

Accordingly, the material-balance equation at the le
vel of substance flows takes the form:

To determine the phase composition of the output 
flows, element balance equations are written for each ele-
ment Еi , since a given element may be present in different 
phases as a range of compounds:

where ,  ‒ the concentrations of the 
m-th substance containing element Еi in k-th condensed 
and gaseous input flows, respectively, %; [Ei ] ‒ the con-
centration of the substance consisting of element Еi , in 
the metal, %; ,  – the concentrations of 
the n-th substance containing element Еi in the slag and 
gas phases of the output flow, respectively, %; ,  , 

 – the numbers of substances containing element Еi in 

the k-th input flow, slag, and gas; хm , ym – the stoichio-
metric coefficients of the m-th compound of element Еi ; 

 ,  – the molar masses of element Еi and its  
 

compounds, kg/mol.
The total mass of the condensed substance R entering 

the system with the input flows is given by:

The mass of the gaseous substance R entering the sys-
tem with the input flows is also determined taking into 
account its content in the gaseous input flows:

The phase composition of the output flow is deter-
mined as follows. In accordance with the element distri-
bution coefficients among phases, the amount of element 
Еi in the metal is determined by the following expression:

here  – the distribution coefficient of element Ei in 
the metal.

The amount of the oxide of element Еi in the slag is 
determined accordingly as

Next, the amount of oxygen remaining in the system 
after oxidation of all components and consumed for iron 
oxidation is determined as follows:

The amount of iron oxides in the slag is then deter-
mined as:

Accordingly, the amount of iron in the metal is calcu-
lated as follows:

Consequently, the masses of metal and slag are deter-
mined as:
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Fig. 2. Algorithm for calculating material and thermal balances

Рис. 2. Алгоритм расчета материального и теплового балансов
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The calculation of the phase composition and masses 
in the ladle is performed in a similar manner; however, in 
this case the input flows consist of the metal produced in 
the furnace and slag that partially enters the ladle during 
tapping.

To calculate the composition of the gas-phase com-
ponents, the following mechanism of off-gas formation 
in the  electric furnace is proposed. For technologies 
involving the use of natural gas, complete combustion 
is assumed, which results in the chemical composition 
of  the  gases in the output flow corresponding to that 
obtained under classical decomposition conditions. 

During complete combustion of natural gas, СО2 and 
Н2О are formed:

The amount of CO formed during combustion of the 
carbon contained in the charge can be determined as fol-
lows:

Taking into account the combustion of natural gas, 
the amount of СО2 in the off-gases is given by:

The total amount of hydrogen in the off-gases is: 

The amount of water vapor is determined as

The amount of nitrogen in the off-gases is equal to 
the amount of nitrogen entering the system with the input 
flows per unit time:

The amount of SO2 in the off-gases is determined in 
accordance with the sulfur transfer coefficient to the gas 
phase:

The total mass of gas is determined as follows: 

When deriving the thermal balance equations, it is 
assumed that the principal processes governing the thermal 
state of the system are: the sensible heat of the charge mate-
rials; heat exchange with the surrounding environ-ment; 
heat released by electric arc combustion; and chemical 
reactions with their associated thermal effects. The thermal 
balance equations are formulated on the basis of the law of 
conservation of energy, expressed as Qin = Qout . 

Taking into account the enthalpy of the input and out-
put flows, the total heat of chemical reactions occurring 
in the system, the heat supplied by the electric arc, as 
well as heat exchange with the environment, the thermal-
balance equation can be written in the following form:

where , , ΔHl ‒ the enthalpies per unit mass of 
the k-th condensed or gaseous input flow and the l-th out-
put flow, respectively, referred to standard conditions and 
a temperature of 298 K; Qarc ‒ the heat input to the system 
from electric arc combustion; Qloss  ‒ heat losses to the 
environment; ΔНcr ‒ the total thermal effect of the chemi-
cal reactions. 

Only liquid pig iron has a nonzero enthalpy; therefore, 
the enthalpy per unit mass of liquid pig iron relative to 
T = 298 K is given by: 

where  ‒ the enthalpy change of the m-th substance 
of liquid pig iron upon heating from 298 K to Tk , kJ/mol; 

 ‒ the concentration of substance Rm , %;  ‒ is 
the molar mass of substance Rm , kg/mol.

The enthalpies per unit mass of metal, slag, and gas 
are determined, respectively, as follows: 
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The thermal effect of chemical reactions is defined as 
the sum of the thermal effects of independent reactions 
describing the transition of the system from the initial to 
the final state: 

where W – the number of independent reactions; 
 – the thermal effect of the w-th chemical 

reaction, kJ/mol;  ‒ the standard thermal effect of the 
w-th chemical reaction;  ‒ the number of moles of 
substance R that reacted in the w-th reaction.

The number of moles of the reacting substance Rw 
is determined as the difference between its amounts in 
the input and output flows:

The heat released by arc combustion is determined 
taking into account the electric energy consumption:

Qarc = 3600E,

where Е – the electric energy consumption, kW·h.
Taking the above into account, the thermal-balance 

equation can be written in the following form:

sl

The principal heat inputs in the thermal balance 
include the heat of liquid pig iron, the heat of exother-
mic oxidation reactions of charge components with gas-
eous oxygen, the heat of slag-forming reactions, and the 
heat released by arc combustion. The heat expenditures 
include heat required for heating the metal, slag, and gas; 
heat consumed for decomposition of carbonates and iron 
oxides; heat required for moisture evaporation; and heat 
losses to the environment. 

The enthalpies of the input and output flows were cal-
culated using the following reference data: coefficients 
of the approximation equation for the heat capacity of a 
substance (c0 , c–1 , c1 , c2 , c3 ), values of the enthalpy of 
formation and entropy at standard temperature (  , 

 ), and data on phase transitions (Тpt ,  ) for indi-
vidual substances.

The solution of the optimization problem using for-
mal methods involves selecting appropriate criteria and 
defining a system of constraints, including requirements 
for metal composition, allowable ranges of variation in 
the  consumption rates of charge-material components 
and system state parameters, compliance with the law 
of conservation of mass at the levels of flows, substances, 
and elements, and compliance with the law of conserva-
tion of energy. 

The following indicators may be used as optimization 
criteria:

– total consumption (TC) of charge materials per unit 
of product, kg/t,

– production cost (C), RUB/t,

– energy consumption (E) per unit of product, GJ/t,

– unit productivity (PU)

where Pk – the price of the k-th input material, RUB/t; 
OH – general plant overhead costs, RUB/t; PC ‒ process-
ing costs, RUB/t; Ek  – is the specific energy intensity 
of the k-th material, GJ/t.

The formulation of the optimization problem consists 
in finding an extremum of one of the selected criteria sub-
ject to the following constraints:

 – on the ranges of variation in charge-material con-
sumption rates:

Gk min < Gk < Gk max ;

– on metal and slag parameters:

[Rn ]min < [Rn ] < [Rn ]max (n = 1 ÷ Nm );

(Rn )min < (Rn ) < (Rn )max (n = 1 ÷ Nsl );

Tl min < Tl < Tl max (l = 1 ÷ L);

‒ compliance with the law of conservation of mass at 
the levels of flows, substances, and elements:
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‒ compliance with the law of conservation of energy:

‒ fulfillment of at least one of the following target 
conditions:

TCmin < TC < TCmax ;

Cmin < C < Cmax ;

Emin < E < Emax ;

PUmin < PU < PUmax .

Thus, a method for mathematical modeling and opti-
mization of the electric melting process has been deve
loped, providing a systematic solution to a set of inter-
related optimization problems. 

 Выводы

The electric steelmaking process was analyzed, and 
a method for its mathematical modeling and optimization 
was developed. The proposed approach is distinguished 

by a systematic treatment of a set of interrelated optimi-
zation problems, enabling the determination of acceptable 
process conditions within the metallurgical system using 
modeling and optimization methods. In addition, tech-
nological operating modes for implementing the electric 
melting technology are proposed. 
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