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Аннотация. При кристаллизации жидкого металла в оболочковой литейной форме на ее поверхностях возникают значительные нормальные 

напряжения: на внутренней – сжимающие, на наружной – растягивающие. Особенно ярко они проявляются в начальный момент времени 
охлаждения. Это может привести к повреждению литейной формы, а значит, и к повреждению кристаллизующейся металлической 
отливки. Снизить уровень напряженно-деформированного состояния в поверхностных слоях можно с помощью нанесения на внешнюю 
и внутреннюю поверхности специальных кольцевых (температурных) выточек (швов). В настоящей работе сформулирована и решена 
задача по влиянию температурных швов во внутренних и внешних слоях оболочковой формы (ОФ) на уровень её напряженно-деформи-
рованного состояния (НДС) при кристаллизации стальной отливки. В качестве параметра стойкости ОФ к трещинообразованию приняты 
нормальные напряжения σ22 , σ33 , возникающие как на внутренней, так и внешней поверхностях ОФ в начальный момент заливки металла 
и охлаждения стальной отливки. Рассматривается осесимметричная задача для цилиндрической керамической ОФ. На основе сформу-
лированной целевой функции приведен алгоритм решения задачи с использованием уравнений линейной теории упругости, уравнения 
теплопроводности и апробированного численного метода. В результате решения задачи определено минимальное количество и места 
расположения выточек на внутренней и внешней поверхности ОФ, обеспечивающих уменьшение нормальных напряжений. Результаты 
решения задачи представлены в виде эпюр напряжений по сечениям рассматриваемой области. Дан анализ полученных результатов стой-
кости ОФ к трещинообразованию. Даны рекомендации по использованию результатов работы в различных научно-технических областях. 

Ключевые слова: литье по выплавляемым моделям, оболочковая форма, напряженное состояние, температурный шов, трещиностойкость, 
алгоритм определения напряжений
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 Введение

Литье по выплавляемым моделям остается одной из 
самых востребованных технологий получения отливок 
высокой геометрической сложности с сохранением тре-
буемой точности. 

Недостатком этого метода литья является высо-
кий процент брака оболочковых форм (ОФ), что свя-
зано с образованием микро- или макротрещин в них, 
их частичным или полным разрушением в процессе 
формообразования, а, главным образом, на технологи
ческих операциях (прокаливании, заливки их расплавом 
в начальной стадии охлаждения отливки) из-за неравно-
мерного нагрева по толщине литейной ОФ. Такая низкая 
стойкость ОФ связана с повышенным уровнем напря-
женно-деформированного состояния (НДС) в них. Для 
снижения влияния таких воздействий в производстве 
применяют различные технологические решения. 

Вопросам исследования НДС литейных многослой-
ных оболочковых форм посвящены работы как оте
чественных, так и зарубежных исследователей. Так, 
в работах [1; 2] отражено влияние формы и геометрии 
ОФ, в  работах  [3; 4]  – толщины стенки ОФ, в рабо-
тах [5; 6] – материала формы, а в работах [7 – 9] – гео-
метрии отливки. Отечественные исследования, посвя-
щенные рассматриваемой проблеме, представлены 

в работах [10 – 13]. Аналогичные проблемы изучались 
и при литье в кокиль [14; 15]. 

Настоящая работа является продолжением иссле
дований авторов по трещиностойкости керамической 
ОФ по выплавляемым моделям при получении в ней 
металлических отливок. В ранних работах авторов 
с помощью математического моделирования изучалось 
НДС цилиндрических ОФ при заливке их жидким метал-
лом. В результате теоретического анализа были найдены 
оптимальные физические параметры материала ОФ и ее 
морфологической структуры, оказывающие решающее 
влияние на трещиностойкость. Эти исследования легли 
в основу разработанных новых видов (типов, образцов) 
ОФ, по которым получены патенты РФ на изобретения 
(№ 2743439, № 2763359) и др.

В основу теоретических исследований авторов 
положен численный метод  [16], с помощью которого 
решаются задачи в следующей постановке: жидкий 
металл заливается в многослойную ОФ, в которой 
он затвердевает в виде отливок; в процессе охлажде-
ния отливки определяется НДС и температура в сече-
ниях ОФ.

На начальном этапе исследования проводились на 
отливке в виде цилиндра со сферическим закруглением 
в данной части, что имитирует модель отливки в виде 
стояка в ОФ.

  diss@knastu.ru
Abstract. During the crystallization of liquid metal in a shell casting mold, significant normal stresses occur on its surfaces. On the inner – compres-

sive, on the outer – tensile. They are especially pronounced at the initial moment of cooling time. This can lead to damage to the casting mold, and 
hence damage to the crystallizing metal casting. It is possible to reduce the level of stress-strain state in the surface layers by applying special annular 
(temperature) recesses (seams) to the outer and inner surfaces. In this paper, the problem of the influence of temperature seams in inner and outer 
layers of a shell mold (SM) on the level of its stress-strain state (SSS) during crystallization of a steel casting was formulated and solved. The normal 
stresses σ22 , σ33 , which occur both on the inner and outer surfaces of SM at the initial moment of metal casting and cooling of the steel casting, are 
accepted as a parameter of SM resistance to cracking. An axisymmetric problem for a cylindrical ceramic SM is considered. Based on the formulated 
objective function, the paper presents an algorithm for solving the problem using the equations of the linear theory of elasticity, the equation of thermal 
conductivity and the proven numerical method. As a result of solving the problem, the minimum number and locations of recesses on the inner and 
outer surfaces of SM, ensuring a decrease in normal stresses, were determined. The results of solving the problem are presented in the form of stress 
plots across the sections of the considered area. The authors analyzed the obtained results of SM resistance to cracking and gave recommendations 
on the use of the obtained results in various scientific and technical fields. 
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Дальнейшие теоретические исследования цилинд
рических ОФ были связаны с установлением влияния 
силового воздействия опорного наполнителя  (ОН) 
и  параметров межслойного трения в ОФ на ее 
НДС [17; 18], по результатам которых также получены 
патенты (№ 2769192, № 2788296).

Как показал производственный опыт контроля стой-
кости литейных форм, наиболее непредсказуемой фор-
мой получаемой отливки является сферическая или 
шарообразная. Для таких ОФ определен оптимальный 
угол их охвата опорным наполнителем и его влияние на 
уровень НДС в ОФ [19].

Математическое моделирование таких процессов 
с использованием численных методов представлено 
в зарубежных работах [20 – 22], а моделирование НДС 
в затвердевающей отливке – в работах [23; 24].

Поиск новых технологических решений по сниже-
нию критического уровня НДС в ОФ позволил пред-
ложить новую конструкцию литейной керамической 
ОФ  [25], основанную на известном методе снижения 
параметров термических напряжений в отливках за счет 
применения так называемых «ребер жесткости» [26].

Выявлено повышение стойкости сферической литей-
ной ОФ за счет наличия на внутренней поверхности 
формы кольцевых (температурных) швов или выточек. 
Повышение стойкости при наличии таких швов уста-
новлено и в металлических литейных формах. 

Отметим, что при заливке стали в ОФ сфериче-
ской геометрии внутренние нормальные напряжения 
в сечении полностью сжимающие, причем довольно 
большой величины, в связи с чем теоретические иссле-
дования сводились к поиску условий, способствую-
щих уменьшению (по модулю) этих напряжений. Наи-
более эффективной оказалась конструкция литейной 
формы с кольцевыми швами в облицовочном слое [25]. 
В  литейных формах цилиндрической конфигурации 
наибольшую опасность представляют растягивающие 
нормальные напряжения на поверхности соприкосно-
вения формы с ОН.

В настоящей работе рассматривается литейная кера-
мическая форма с цилиндрическим участком и теоре-
тически анализируется влияние температурных швов 
не только на внешнем слое ОФ, но и на внутренней 
ее поверхности. Рассматривается «жесткий» вариант 
литейной формы: монослойная керамическая с пос
тоянным модулем сдвига.

 Математическая постановка задачи

Рассматривается осесимметричное тело вращения 
(рис. 1), имеющее жидкую фазу (металл) (I), затверде-
вающую корочку  (II), оболочковую форму  (III), опор-
ный наполнитель (IV), круговые выточки ai на поверх-
ности облицовочного слоя (поверхности S2 ) и круговые 
выточки bi на поверхности соприкосновения формы (III) 
с опорным наполнителем (IV) (поверхности S3 ). 

Пусть А  – конечное множество круговых выточек 
ai на поверхности S2 ; A = {ai , i = 1, ..., n}; В – конечное 
множество круговых выточек bi на поверхности S3 ; 
B = {bk , k = 1, ..., m}. Положим, C = A   B. Как следует 
из многочисленных работ авторов, опасными напряже-
ниями при заливке стали в ОФ являются σ22 , σ33 . При-
чем при охлаждении стали в ОФ с цилиндрическими 
участками опасными являются растягивающие напря-
жения σ22 на поверхности S3 , а при охлаждении стали 
в ОФ сферической конфигурации опасными являются 
сжимающие напряжения σ33 на поверхности S2 .

Сформулируем задачу.
Требуется найти такое наименьшее количество 

выточек А на поверхности S2 ОФ и количество выто-
чек  В на поверхности S3 , а также их геометрическое 
расположение, чтобы при охлаждении металла в литей-
ной форме (ЛФ) наибольшие (по модулю) напряжения 
в области Q при τ = τ* не превышали заданных ограни-
чений:

Рис. 1. Расчетная схема системы с указанием поверхности 
к граничным условиям задачи: 

S1 – поверхность контакта жидкого и затвердевшего металла; 
S2 – внутренняя поверхность контакта затвердевшего металла  

и керамической формы; 
S3 – внешняя поверхность контакта керамической формы  

с опорным наполнителем; 
I – жидкий металл; II – корочка затвердевшего металла; 

III – оболочковая форма; IV – опорный наполнитель; R – радиус 
сферической части ОФ; h – высота цилиндрической части ОФ

Fig. 1. Calculation scheme of the system with indication of the surface 
to the problem boundary conditions: 

S1 – inner contact surface of liquid and solidified metal; 
S2 – inner contact surface of solidified metal and ceramic mold; 
S3 – outer contact surface of ceramic mold and supporting filler; 

I – liquid metal; II – crust of solidified metal; 
III – shell mold (SM); IV – supporting filler; 

R – radius of SM spherical part; h – height of SM cylindrical part
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		           	 (1)

здесь Q  – область меридианного сечения; τ*  – макси-
мальное время охлаждения, после которого темпера-
тура по области Q начинает выравниваться и нормаль-
ные напряжения σ22 , σ33 начинают уменьшаться (по 
модулю).

Значение τ* определим из функции

		        	 (2)

при ограничении τ ≤ 60 с.
Для определения F запишем систему уравнений в 

декартовой системе координат для каждой из подоб
ластей (рис. 1), используя линейную теорию упругости:

– область I:

		    	 (3)

– области II, III:

    (4)

где σij – компоненты тензора напряжений; σ – гидроста-
тическое напряжение; εij  – компоненты тензора упру-
гих деформаций; h  – высота столба жидкого металла;  
 

 – коэффициент объемного сжатия; μ – коэф- 
 

фициент Пуассона; E – модуль Юнга; Gp (θ)  – модуль 
сдвига в области p (p = II, III); αp – коэффициент линей-
ного расширения; a1  – коэффициент температуропро-
водности в области (I); τ – время; θ – температура; Cp – 
удельная теплоемкость в области (p); γ – удельный вес; 

  – начальная температура в области (p); λ = λ (θ)   – 
коэффициент теплопроводности; используется сумми-
рование по повторяющимся индексам.

В процессе охлаждения жидкого металла при усло-
вии, что температура металла θм ≤ θк (θк – температура 
кристаллизации), определяется толщина затвердевшего 
слоя Δi из решения уравнения межфазового перехода.

Начальные условия задачи:
 – отсутствие твердой фазы металла;

 – температура разливаемого жидкого ме- 
 

талла;
 – начальная температура формы. 

Граничные условия задачи в ортогональных коорди-
натах (рис. 1): 

 – для осесимметричной задачи 

	        	 (5)

– на оси симметрии

U2 = 0; σ21 = 0; qn = 0; θ = θм ;

– на поверхностях S1 , S3 , S4

	            	 (6)

где Uск  – перемещение материала формы при сколь-
жении относительно ОН (песка), U*  – нормирующее 
перемещение; ψ – параметр, характеризующий условия 
трения между формой и опорным наполнителем; τs  – 
условный предел текучести при сдвиге; qn – тепловой 
поток.

При решении температурной задачи использовались 
граничные условия первого рода. Для определения 
θм (τ) и θ*

 (τ) воспользуемся данными работы [27]:

		         	 (7)

здесь τ – время охлаждения, с;  = 1550 °С; θ1 = 100 °C; 
θ0 = 20 °С; θ* – температура на поверхности S3 ; τ1 = 60 с; 
τ1 = 1 с.

Время τ не превышает 60 с, так как при τ ≥ 60  с 
напряжения в ОФ не представляют опасности разруше-
ния.

Примем модуль сдвига ОФ

		      Gф = 2960 кг/мм2.	 (8)

Алгоритм решения системы (4) при граничных 
условиях (5) – (7) подробно описан в работе [27]. 

Расчет показал следующее:

	            F = –65,6 МПа; τx = 21,65 с.	 (9)

Результат решения приведен на рис. 2 в виде эпюр 
по сечению рассматриваемой оболочки. Напряжения 
σ22 , σ33 весьма значимы. На облицовочном слое σ22 , σ33 
отрицательны и достигают значительной величины на 
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цилиндрической части ОФ, причем |σ33| > |σ22| в 1,5 раза. 
На сферической части σ22 и σ33 меньше отличаются, но, 
приближаясь к цилиндрической области, разница между 
ними весьма значительна. На наружном слое (контакте 
с  опорным наполнителем) напряжения σ22 положи-
тельны. Причем на сферической части примерно оди-
наковой величины, а на цилиндрической – возрастают 
к верхней части формы. Напряжения σ33 на этой поверх-
ности (поверхность S3 ) сопоставимы с  напряжением 
σ22 в сферической части и практически равны нулю на 
цилиндрической. Из рис. 2 видим, что напряжения σ33 , 
σ22 при заливке стали в керамическую форму значи-
тельно превосходят (по модулю) ограничения (1).

Зная значения τ*  (9), перейдем к решению постав-
ленной задачи. Рассматривается процесс охлаждения 
стали в керамической форме с температурными швами 
(круговыми выточками). В отличие от предыдущей 
задачи сечение Q представляет многосвязную область. 
Начальные и граничные условия во многом совпадают 
с предыдущей задачей. Граничные условия (6) допол-
няются (рис. 1):

  (10)

Выполняется также соотношение (7) при принятом 
значении модуля сдвига (8). 

 Алгоритм решения задачи

1. Задаются геометрические размеры области, 
конечное время охлаждения τ*, геометрические раз-
меры выточек и их начальные координаты на S2 , S3 : 
ai (0), bi (0). Время охлаждения τ* разбивается на конеч-
ное число шагов:  (где n – номер временного  
 

шага).
2. Исследуемая область разбивается системой орто-

гональных поверхностей на конечное число элементов.
3. Вычисляются длины дуг элементов  (i, k = 1, 2, 3; 

i ≠ k; j = 1, 2).
4. Задаются начальные и граничные условия по эле-

ментам, образующим рассматриваемую область (5), (6), 
(10), и константы физико-механических свойств мате-
риалов.

5. Определяется поле температур на временном 
шаге Δτn численным решением уравнения теплопровод-
ности с использованием итерационной формулы  [27], 
при наличии начальных и граничных условий на дан-
ном временном шаге. Наличие выточек при решении 
температурной задачи не учитывалось.

6. Если выполняется условие  области  (I)  
 

у поверхности S2 , то вычисляется толщина закристал-
лизовавшейся корочки Δn .

7. Решается система уравнений (3), (4) с учетом гра-
ничных условий (6), (10), разностных аналогов и раз-
работанной методики с использованием программы 
«Одиссей»1. Определяются поля напряжений σij и пере-
мещений Ui (i, j = 1, 2).

8. На поверхности S3 проводится оценка при-
легания формы к ОН по каждому элементу: если 

 проводится переназначение  
 

граничных условий и выполняется операция 7.
9. Проводится шаг по времени. По формулам (7) 

уточняются граничные условия решения температур- 
 

ной задачи. Если  то выполняется опера- 
 

ция 5. Если  то выполняется операция 10.
10. По области Q анализируются значения σ33 , σ22 

и выбираются наибольшие (по модулю) значения, пре-
восходящие ограничения (1). Формируются матрицы 

. Если ограничения (1) выполняются, то сле-
дует операция 12.

11. Из матрицы  выбираются наибольшие, 
и в этих сечениях выполняются выточки. Выполняется 
операция 7.

12. Процесс расчета заканчивается. 

1 Одиноков В.И., Прокудин А.Н., Сергеева А.М., Севастья-
нов Г.М. Свидетельство о государственной регистрации программы 
для ЭВМ №2012111389. ОДИССЕЙ. Зарегистрировано в Реестре 
программ для ЭВМ 13.12.2012.

Рис. 2. Эпюры напряжений σ22 ( ) и σ33 ( ) по сечению ОФ

Fig. 2. Stress plots σ22 ( ) and σ33 ( ) along SM section
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 Результаты решения задачи

Геометрические параметры: S = 5 мм; R = 20 мм; 
h = 50 мм.

Временные интервалы Δτn : 0,01, 0,02, 0,03, 0,04, 
0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 2, 5, 5, 5, 3, 3, 5, 5, 5, 5 с.

Приняты следующие физические параметры раз
ливаемой стали при θ > 1000 °C (  = 1550 °С) [27]:

G = 1000 кг/мм2; α = 12·10–6 град–1; 

λ = 0,0298 Вт/(мм·°C); 

L = 270·103 Дж/кг (скрытая теплота плавления); 

C = 444 Дж/(кг·°C); γ = 7,80·10–6 кг/мм3; θк = 1450 °C.

Физические свойства керамической формы:

G = 2960 кг/мм2; α = 0,51·10–6 град–1; 

λ = 0,000812 Вт/(мм·°C); 

C = 840 Дж/(кг·°C); γ = 2,0·10–6 кг/мм3.

Размеры выточек: ai = 1×2 мм, bi = 1×3 мм.
Расчет по приведенному выше алгоритму показал 

следующие значения: F = 5; ai = 2; bi = 3; геометрическое 
местоположение выточек (ai , bi ) и температуры в сече-

нии (x2 = 0) показаны на рис. 3. Полученные результаты 
по напряжениям σ33 , σ22 приведены на рис. 4.

Видим, что все максимальные значения напряжений 
σ33 (по модулю) и растягивающие напряжения σ22 отве-
чают заданным ограничениям (1), хотя и очень близки 
в некоторых сечениях к граничным величинам.

 Выводы

Поставлена и решена осесимметричная задача по 
оптимизации процесса охлаждения стальной отливки 
в керамической форме, имеющей цилиндрический и сфе-
рический участки и температурные кольцевые вырезы.

Показана эффективность нанесения на литейную 
форму кольцевых выточек на наружную и внутреннюю 
поверхности, соприкасающиеся с охлажденным метал-
лом. 

Полученные результаты могут быть полезны при 
исследованиях других технологических процессов, 
проведении прочностных расчетов и решении оптими-
зационных задач.
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