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Abstract. For 13G1S-U sheet steel and large forgings made of heat-treatable 38KhN3MFA-Sh steel, produced by existing technologies, the possible
consequences for quality assessment of metal products were analyzed related to changes in the number of samples used in testing a single product
unit (batch, forging). Based on the calculation of skewness and kurtosis coefficients, the authors estimated the change of distribution type of impact
strength values accompanying the change in the number of samples. The sampling of impact strength range values obtained from testing two
samples (three possible paired combinations) per unit of products were compared using the Student’s and Smirnov’s criteria, both among them-
selves and with the original sampling (three samples for evaluating one batch of sheet). The obtained results also showed that in conditions when
the statistical nature of values distributions of the metal products quality parameters differs from the normal distribution type, it is necessary
to use the criteria of nonparametric statistics. The risks of possible loss of information on the metal products’ quality when reducing the number
of samples tested within a single batch were assessed. In order to obtain adequate results of statistical analysis, it is necessary to identify and elimi-
nate possible side effects that distort results of analysis: trends, seasonal fluctuations, and data recording errors. For metal products characterized
by the developed heterogeneity of structures, obtaining objective information on the toughness reserve of steels can be obtained on the basis
of micromechanical tests of samples whose dimensions are comparable to the scale of structural heterogeneity. The obtained results can be useful
in the statistical analysis of production process and product control databases in metallurgy to obtain reasonable technological recommendations
(within the framework of operation of the end-to-end quality management system) aimed at improving the uniformity of metal product.
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Annomayus. [lns nucroBoit cramu 13I'1C-Y u kpynHOrabapuTHBIX TOKOBOK 13 yiayuiaemoi ctanu 38XH3M®DA-III, u3rotoBaeHHBIX MO CyLIECT-

BYIOIIMM TEXHOJOTHUSIM, ObLIN HPOAHATN3UPOBAHBI BO3MOXKHBIC ITOCICACTBHS AJIsl OLICHKH KauyecTBA METAJUIONPOIYKIIIH, CBI3aHHBIC C H3MEHE-
HUEM KOJIMYeCTBA 00pa3I0B, HCIOIb3YEMbIX MPH TECTUPOBAHUHU SMHULBI POAYKIHHK (TTapTuH, MokoBkK). Ha ocHoBe pacuera ko3¢ duineHToB
ACHMMETPHUH U JKCI[ECCa aBTOPbI OLICHWIN U3MEHEHHE BUJIa PACIIPE/ICIICHUS 3HAUYCHU Il YIapHOU BS3KOCTH, COMYTCTBYIOIISE BapUALMK KOJIHYE-
cTBa 00pasioB. Bribopka 3HaUeHNI THana3oHa yIapHOW BSI3KOCTH, MOTYyYCHHBIX B PE3YIBTAaTe TECTHPOBAHMUS ABYX 00pa3IoB (TPEX BOZMOXKHBIX
MapHbIX KOMOMHAIMI) Ha €IUHUILY TPOIYKIHH, CPABHUBAIACH C UCIOIb30BaHHEeM KpuTepueB CrhioneHTa 1 CMUPHOBA Kak MEXIy COOOM, Tak
U C MCXOAHOI BEIOOPKOH (TpH 0Opasua s OLECHKH OAHOI mapTum jucta). IlomydeHHble pe3ybTaThl TAKKE MOKA3alH, YTO B yCIOBHAX, KOTIa
CTaTHCTHYECKAs MPUPOJA PACIIPEACICHNIl 3HAYCHHI MTapaMeTPOB KauyecTBa METAJUIONPOAYKIIMH OTIMYACTCs OT HOPMAaJIbHOIO BH/a pacrpesie-
JICHHs, HEOOXOANMO HCIIONB30BAHNE KPHUTEPHEB HEMAPAMETPUUCCKOW CTATUCTHKU. BBIIM OLCHEHBI PHCKH BO3MOKHON MOTepH HH(MOpMALUH
0 KaueCTBE METAJUIONPOAYKLUH [PH YMEHBIICHUH KOJIUYECTBAa 00PA3LOB, HCIBITHIBAGMBIX B PaMKaxX OTACNIbHOM naptuu. J{iis nonydeHus aiex-
BAaTHBIX PE3YJIBTATOB CTATHCTHYCCKOTO aHAIN3a HEOOXOAMMO BBISIBHTh U YCTPAHUTH BO3MOXKHBIC TOOOYHBIC SIBIICHNUSI, HCKAXKAIOLINE PE3YIbTAThI
aHaJM3a: TPEH/bI, CE30HHBIC KOJIeOaHMs, OMMOKH B 3alMCH AaHHBIX. J[I1 METaIUIONPOAYKIMH, OTIHYAIOIICHCS pa3BUTON HEOIHOPOAHOCTHIO
CTPYKTYP, 00beKTHBHAsE MH(OPMALHS O 3armace BSI3KOCTU CTalei MOXKET ObITh MOIyYeHa Ha OCHOBE MUKPOMEXaHHYCCKUX MCTIBITAHUIT 00pa3IoB,
rabapuThl KOTOPBIX COMOCTABUMBI C MAcIITabOM CTPYKTYpPHOU HEOAHOPOAHOCTH. [loydeHHbIE Pe3yIbTaThl MOI'YT OBITh MOJIC3HBI IPH CTATHCTH-
YECKOM aHau3e 6a3 JaHHBIX IPOU3BOACTBEHHOTO KOHTPOJIS MPOLEcca M MPOAYKTa B METAIUTYPrHH IS TIOATOTOBKHA 000CHOBAaHHBIX TEXHOIOTH-
YEeCKUX PeKOMEHIaluii (B paMKax (yHKIHOHUPOBAHHSI CKBO3HOH CHCTEMbI YIPABICHHUS KaueCTBOM), HAIIPABICHHBIX Ha MMOBBILICHHE OIHOPO/-

HOCTH Ka4€CTBa MCTAJUIONPOAYKIIMH.

Kniouesvle cno6a: cratucTHYecKHil aHANU3 B METAUTyPrUH, OLIGHKA KAa4eCTBA METAJUIONPOLYKINH, HHGOPMATUBHOCTh PE3y/IbTATOB MEXaHMYECKUX
WCIIBITAHUM, CTATUCTUYECKAs IPUPO/IA TAHHBIX IPOM3BOJCTBEHHOTO KOHTPOJIS IPOAYKTA, KPUTEPUH HEIapaMETPHUYECKOM U KIIACCHYECKOW CTaTHCTH-

ku, Big Data

Jna yumupoeaHnusi: Coxonosckas J.A., bocos E.B., Kyaps A.B., Konupos J1.®., AnexceeB B.. O BO3MOXHBIX TOCIEICTBHUSIX, BEI3BAHHBIX YMEHb-
LICHUEM KOJIHMYecTBa 00pa3LOB MPH IPHUEMO-CIATOYHBIX MCIBITAHUSAX CMHUIIBI METAIIONPOAYKIMU JUIsl OLIGHKU e¢ KadecTBa. M3secmus 6)308.
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- INTRODUCTION

Steel production is a complex, multi-stage process,
with each stage well-equipped with tools for measure-
ment and data collection. Depending on the intended
application, the quality of metal products is typically
assessed through mechanical testing, structural analysis,
and fracture evaluation. Objective quality assessment
is also essential for addressing the inverse problem —
namely, establishing the relationship between structure
and properties, identifying critical structural parameters
responsible for variations in metal quality, and deve-
loping technological recommendations to improve pro-
duct uniformity [1 — 2]. In this context, modern IT solu-
tions — such as neural networks, Big Data algorithms, and
machine learning — are increasingly used to process large
datasets generated through production process and pro-
duct quality control [3 — 6].

There is growing interest in enhancing methods for
evaluating the quality of metal products, particularly
given the new opportunities created by the digitalization
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of structural and fracture measurements and the auto-
mation of experimental data processing [7 —8]. For
example, despite decades of experience with mechanical
testing, it remains unclear how variations in the number
of test samples used in acceptance testing may affect
the completeness of quality assessments — especially con-
sidering the wide range of heterogeneous structures that
form under standard, well-established technologies and
the significant resulting variability in properties, particu-
larly impact strength.

Various approaches exist for determining the number
of samples per unit of metal product during mechanical
testing [9]. Such requirements may be specified in regula-
tory standards. For example, GOST 4543 — 2016 “Metal
Products Made of Structural Alloy Steel” stipulates that
one sample for tensile testing and one for impact testing
(under each relevant test condition) must be taken from
each bar, strip, or coil selected for quality control. In
some cases, testing procedures are established by agree-
ment between the manufacturer and the customer, based
on the product’s intended use. Typically, the number
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of identical tests per control unit ranges from one to three,
with impact testing usually performed at the upper limit
due to the high variability of results. Sampling norms are
the result of long-standing practical experience and have
remained largely unchanged for decades. Their conserva-
tive nature is reflected in the update history of such stan-
dards — for example, GOST 4543 was revised in 1948,
1971, and 2016.

With the accumulation of representative production
control databases, the growth of computational resources,
and the development of specialized software tools, it has
become possible to evaluate how changes in the number
of test samples per product unit influence quality certifi-
cation outcomes. While a reduction in the number of tests
clearly leads to some loss of valuable information,
the extent of that loss requires clarification. Understand-
ing this is essential not only for evaluating the objecti-
vity of quality assessments but also for making informed
decisions on adjusting the technological process — parti-
cularly given the significant variation in acceptance test-
ing results commonly observed in practice. Interest in this
issue is also driven by the widespread use of mechanical
testing and its contribution to the overall production cost
of metal products.

A retrospective approach to this issue also allows for
consideration of the statistical nature of the subject (i.e.,
large-scale production control datasets), making it pos-
sible to justify the selection of appropriate statistical tools
that enhance the objectivity of the findings [10 — 11].

In this regard, the aim of this study is to assess
the completeness of information obtained when varying
the number of samples used in mechanical testing of indi-
vidual metal product units. This analysis serves as a foun-
dation for improving the effectiveness of metal quality
forecasting through statistical analysis of production pro-
cess and product control data in metallurgy.

[ RESEARCH OBJECTS AND METHODS

This study was based on production control databases
for two types of metal products manufactured using estab-
lished technologies over one to two years: large, variable
cross-section forgings made of heat-treatable 38KhN-
3MFA-Sh steel, and sheet products made of 13G1S-U
steel [1]. Each database was structured as a matrix 4, ,
where the rows (m) corresponded to the number of heats
(or batches/forgings), and the columns (7) included both
technological parameters (n,) and product quality cha-
racteristics (nq). For 38KhN3MFA-Sh steel, the database
contained m = 342 forgings derived from 40 individual
heats, with the matrices linked to the chemical compo-
sition after electroslag remelting. For 13G1S-U sheet
steel with thicknesses of 8, 10, and 12 mm, the number
of batches was m =751, 668, and 1281, respectively.
the total number of columns n in the matrices was 91/20
and 33/16 for the two steels, corresponding to ”,/”q

values. the output parameters included, in particular, ulti-
mate tensile strength (o), yield strength (o,,), elon-
gation at break (§), and impact strength (KCUIKCY),
all measured at various test temperatures. Tangential
mechanical test samples from 38KhN3MFA-Sh forgings
were cut from end-face templates at maximum (D,) and
minimum (D) diameters. Two samples were tested per
temperature condition: one for tensile testing at +20 °C

, and two for impact strength at +20 (KCU, and KCU, )
and -50 °C (KCU; and KCU; %, From each batch
of 13G1S-U sheet steel, one transverse sample was
selected for tensile testing at room temperature, and three
transverse samples were selected for impact strength test-
ing at —40 °C and 0 °C, respectlvely (KCU™, KCU*40
KCU* and KCV, KCV° and KCV;) .

Statlstlcal evaluatlon of sample groups (or batches)
of acceptance test parameters was performed using
Microsoft Excel. For each group, the maximum (x, ),
minimum (x, . ), mean X, (with standard deviation s)
and range (A= xl —_— zmm) were determined. the distri-
bution type of each parameter was analyzed by construct-
ing histograms using equal-width intervals. the num-
ber of intervals was set as the cube root of the number
of measurements [12]. Skewness (4 ) and kurtosis (£ )
coefficients were then calculated, along with their respec-
tive standard errors [13 — 14].

Sample comparisons were performed using
the Smirnov’s and Student’s tests (hereafter referred
to as C, and C,, respectively), with the significance level
of each hypothesis tested.

[ RESULTS AND DISCUSSION

One of the main barriers to the effective use of mo-
dern software tools in processing large-scale datasets is
the insufficient attention paid to identifying factors that
can significantly distort the results of statistical analysis.
These distortions may affect both input variables and out-
put parameters — such as the results of acceptance test-
ing. For example, when chronological series of quality
characteristics and technological parameters were const-
ructed for 13G1S-U steel, correlated “seasonal” fluctua-
tions were observed in both impact strength and niobium
content (Fig. 1). This pattern indicates that the original
dataset is, effectively, divided into two distinct sub-
sets: one with low niobium content (Nb <0.03 wt. %)
and one with high content (Nb > 0.03 wt. %). For sheet
thicknesses of 8, 10, and 12 mm, the number of batches
in the low-Nb subset was 269, 395, and 260, respectively;
in the high-Nb subset, 489, 273, and 1021 batches. Con-
ducting a combined statistical analysis of these subsets
would result in averaging both input and output parame-
ters, which would distort the actual shapes of the parame-
ter distribution histograms and hinder the use of statistical
tools such as regression analysis. Therefore, subsequent
statistical processing was performed separately for
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Fig. 1. Chronological series of distribution of impact strength KCV° (for three samples per batch) (a)
and niobium content () in a sheet 8§ mm thick made of 13G1S-U steel

Puc. 1. XpoHOIOruuecKue psibl pacupeencHus yaaphoii askoct KCV0 (o Tpem ob6pasuam Ha napTuio) (a)
U coneprkanus Huoowus (b) B mucre TommmHoN 8 MM u3 ctamu 13I'1C-Y

the two subsets. the present paper reports the results for
the subset with Nb > 0.03 wt. %, as it was the more rep-
resentative in terms of sample size.

It is important to emphasize that such effects are not
unique to impact strength and may take various forms.
For example, in a chronological series of yield strength
values for pipe steel (strength category K65, wall thick-
ness 27.7 mm), which correspond to the left and right
peaks of a bimodal distribution histogram, a consistent
alternation of values over time was observed [15].

For all datasets — regardless of how they were struc-
tured (e.g., whether trends were identified, data entry
errors corrected, or other preprocessing steps applied) —
the key statistical characteristics of the acceptance para-
meters were calculated. the analysis revealed a substantial
spread in mechanical property values (Tables 1 and 2).

The greatest variability in property values was
observed for impact strength, compared to strength
parameters. For example, in 13G1S-U steel, the maxi-
mum toughness value exceeded the minimum by a fac-
tor of 5 — 6, while for 38KhN3MFA-Sh steel, the diffe-
rence was twofold — similar trends were also observed
in other types of metal products [10]. Such heterogeneity
in toughness is attributed to differences in the scenarios
of technological inheritance — the realization of diverse
mechanisms of structural and defect evolution along
the technological chain, ultimately leading to a wide
variety of morphologies in nominally similar final struc-
tures [1; 16; 17]. This underscores the need for an objec-
tive assessment of the extent of variability in impact
strength. Consequently, any variation in the number
of tested samples (in this case, per individual forging

Table 1. Scale of heterogeneity of 13G1S-U sheet steel quality

Ta6auya 1. MacuiTad HeOTHOPOIHOCTH KayecTBa JUcTOBOI cTaiau 13T'1C-Y

thickillzzzf mm Parmeter KCU, J/cm? KCVO, J/em? c,, MPa G,,» MPa S, %
. X=X =A | 382-48=334 | 343-40=303 | 660—487=173 | 545-391=454 | 36— 18=18

X, s 135 £51 121 £52 568 +£29 450 £ 25 28+ 3
X Ximn = A | 280-48=232 | 372-52=320 | 560-399=161 | 655-515=140 | 36-19=17

10 X, s 136 £ 40 118 +47 464 +26 577 £ 24 27+3
XX = | 489 14=475 | 365-26=339 | 640-492=148 | 545-379=166 | 36— 17=19

12 X, s 132 £ 50 117 £ 50 568 + 20 455 +27 28+2
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Table 2. Scale of heterogeneity of quality of forgings from 38KhN3MFA-Sh steel according to the tests of samples
cut in end templates of forgings with diameters D, and D,

Ta6auya 2. MaciiTad HeOTHOPOTHOCTH KayecTBA MOKOBOK H3 cTaan 38XH3IM®A-III no ncnbITaHUSAM 06pa3IoB,
BbIPE3aHHbIX U3 TOPUEBLIX TEMILIETOB NOKOBOK uamMeTpom D, u D,

E?ﬁ;?;: Parameter KCU, J/cm? KCU, J/cm? c,, MPa G,,» MPa 3, %
tmax~ Ximin = A | 63-28=35 58—-20=38 1580 —-1190=390 | 1490 - 1110=380 | 16.5-9.3=7.2
b, X,*ts 47+ 6 40+ 6 1278 £40 1375 £35 13.6£1,1
b X Ximin = A | 56-31=25 51-20=31 1570 — 1340 =230 | 1490 —1230=260 | 17.5-8.8=28.7
! X+ 43 + 4 33+5 1483 + 31 1377 + 23 123+ 1.1

or sheet batch) can become a significant factor affecting
the reliability of the quality assessment.

However, comparing different datasets solely based
on their mean values and ranges does not always pro-
vide a complete picture of the variability in the quality
characteristics of metal products. However, compa-
ring different datasets solely based on their mean values
and ranges does not always provide a complete picture
of the variability in the quality characteristics of metal
products. For instance, a large range may result from
the presence of isolated outliers, and mean values and
their variances are meaningful only if the distribu-
tion of quality parameters approximates a normal pat-
tern [10]. This consideration motivated the construction
of distribution histograms. Separate histograms were
constructed for the results of the first {KCU,;*’}, second

{KCU . and third {KCU,*} tests for 13G1S-U steel,
and for the first {KCU;*’} and second {KCU % tests for
38KhN3MFA-Sh steel, with the test number correspon-
ding to a specific column in the data matrix (Fig. 2).

The distribution of impact strength values showed
noticeable deviations from the normal distribution.
the extent of this deviation was assessed based on the cor-
responding skewness and kurtosis coefficients, which
varied over a fairly wide range. For 38KhN3MFA-Sh
steel, the skewness (4,) and kurtosis (£ ) coefficients
of impact strength values ranged from [-0.43; —0.31] and
[0.70; 0.80], respectively for templates with diameter D,
and within [-0.31; 0.35] and [-0.14; 0.23] for templates
with diameter D,. For the distributions of KCV? and
KCU* impact strength values in 13G1S-U steel — speci-
fically for sheets with a thickness of 8 mm — the skewness
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Fig. 2. Histograms of distribution of impact strength values (KCU%) of 13G1S-U steel (sheet thickness — 8 mm) ()
and 38KhN3MFA-Sh steel (KCU) for end-temples with diameters D (b) and D, (c)

Puc. 2. TucrorpaMmsl pacrpejienenus 3uadenuil ynapuoii ssskoctu (KCU ) cranu 13T1C-Y (tonmuna aucra 8 mm) (@)
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and kurtosis coefficients ranged as follows: [1.64; 1.68];
[1.54; 1.81] and [3.12;3.40]; [3.4;5.29]. Differences
in the statistical indicators derived from individual test
results — {KCU; ™}, {KCU;*}, {KCU*} and {KCV;'},
{KCV_?}, {KCV?} (assuming that impact strength was
assessed using only one sample per product unit — either
a sheet batch or a forging) — reflect underlying differences
in the statistical nature of these datasets. the absolute
values of the skewness and kurtosis coefficients provide
a quantitative measure of deviation from a normal dist-
ribution. This, in turn, underscores the need to account
for the shape of the distribution when determining
the appropriate number of samples required for metal
product certification.

In statistical analysis, the reliability of results depends
heavily on the sample size [1; 13]. For samples with
the largest available volumes (V)), the error in calculating
the skewness and kurtosis coefficients was minimal — 0.23
and 0.77, respectively. As the sample size V, decreased —
starting from ¥, =200 — 250 for sheet steel (depending
on thickness) and ¥, =150 -200 for forgings — both
the variability in skewness values and the associated esti-
mation error increased noticeably. With further reductions
in sample size — for example, in the case of KCU** impact
strength values (based on three samples per batch) for
13G1S-U steel sheets 12 mm thick — the skewness coeffi-
cient (4,), calculated across 20 subsamples (each contain-
ing 50 batches) sequentially extracted from an original

dataset of 1000 batches, ranged within [-0.2; 2.2], with
an estimation error of 3.0. Clearly, at this level of varia-
tion of coefficient As and with such a high error margin,
the resulting statistical estimates cannot be considered
reliable. the same conclusion applies to impact strength
samples for 38KhN3MFA-Sh steel forgings.

In this context, relying on mean values across samples
and applying classical statistical tests for comparison
may introduce uncertainty into the resulting assessments.
For example, pairwise comparisons of impact strength
values in 13G1S-U steel — based on the standard testing
results from three samples per batch (Table 3) — revealed
that the significance level of the hypothesis of sample
equivalence differed considerably when evaluated using
the Student’s and Smirnov tests [18], with discrepan-
cies reaching up to 30 %. In practical terms, this means
that the three possible pairwise combinations of impact
strength results from each batch (i.e., product unit) may
follow different distribution patterns, suggesting diffe-
rences in their underlying statistical nature. As a result,
classical statistical criteria such as the Student’s test may
not always confirm the equivalence of samples — and
in some cases, simultaneous use of the Student’s and
Smirnov’s tests may even lead to contradictory conclu-
sions.

It is clear that testing two samples per product unit
improves the overall completeness of the quality assess-
ment, compared to testing just one. However, this also

Table 3. Comparison of different impact strength samplings (obtained by their pairwise extraction
from the results of standard toughness evaluation of three samples per batch)
by Student’s (Cp) and Smirnov’s (C,) criteria, 13G1S-U" steel

Tabauya 3. ConocraBiieHHe Pa3JIUYHBIX BEIOOPOK YIAPHOIi BA3KOCTH (TMOJYy4YEHHBIX PH HX MONAPHOM H3BJIeYEeHUH
U3 Pe3yJbTATOB IITATHOI OLIEHKH BSI3KOCTH MO TPeM 00pa3uaM Ha NapTHIO)
*
1o kpurepusamM CTbIoIeHTa (Cp) u Cmupnoga (C), craas 13I'1C-Y

Experimental test statistics / significance levels for pairs of test results
Impact Sheet —40 —40 —40 —40 —~ —40
strength, | thickness, {KCU(VO)‘ } {KCU(VO). } {KCU(VO). } {KCU(VO)k } {KCU(VO). } {KCU( ) }
J/em? mm ' ! ' !
€. C, €. C, €, C
3 0.741 0.157 0.870 0.521 0.870 0.679
0.640 0.900 0.430 0.700 0.430 0.500
KCU 0 10 0.513 0.091 0.427 0.115 0.470 0.025
0.950 0.900 0.990 0.900 0.980 0.900
12 0.509 0.437 0.464 0.345 0.553 0.096
0.950 0.700 0.980 0.800 0.920 0.900
2 0.322 0.094 0.322 0.175 0.419 0.080
0.990 0.900 0.990 0.900 0.990 0.900
0.557 0.217 0.514 0.215 0.729 0.429
Ker 10 0.910 0.900 0.950 0.900 0.660 0.700
12 0.553 0.165 0.664 0.420 0.487 0.254
0.920 0.900 0.770 0.700 0.970 0.800
* Cells highlighted in color indicate discrepancies between the results of sample comparison by Student’s (Cp) and
Smirnov’s (C,) criteria.
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raises the question of how to select a single value that
adequately represents the product’s quality. Calcula-
ting the mean X, of two values may be inappropriate, as
the same average can correspond to different ranges (A)
between maximum and minimum values. Likewise,
samples with identical ranges may differ in their abso-
lute property levels, such as the median. One possible
approach to statistical analysis is to select the minimum
(i.e., worst-case) toughness value; however, it is generally
preferable to base such decisions based on a comprehen-
sive evaluation of all possible assessment options [19].
From a general standpoint, it is evident that testing
three samples per product unit not only allows for esti-
mating the standard error of the mean (s), but also pro-
vides a more objective assessment of quality heteroge-
neity — both in terms of standard deviation and range (A).
Distributions of impact strength ranges (AKCU?)
were constructed based on the results of all three tests
conducted for each batch of 13G1S-U steel sheets
(12 mm thick), as well as on all possible pairwise combi-
nations of these results (AH, A, , and Ajfk, where indices

correspond to column numbers in the data matrix). A uni-
fied binning method was used to make these distributions
comparable (Fig. 3).

All resulting histograms of range values exhibited
right-skewed distributions, as confirmed by the calculated
skewness (4, ) and kurtosis (£ ) coefficients (Table 4).

As expected, the absolute skewness and kur-
tosis values for the full three-sample distributions
(A=KCU_  —KCU_.) owere lower than those for
the pairwise combinations. However, the absolute ranges
based on three samples exceeded the pairwise ranges
(A, Ay and A in 56.4 —67.7 % of cases across all
sheet thicknesses and batches. In the pairwise data, range
values tended to be smaller: the majority fell into the first
bin, some were identical (zero range), and in subsequent
bins, the number of values was 1.5 to 2.5 times lower than
in the histogram based on three-sample data. All pairwise
range datasets of range values (A, A, and A for
KCU and KCV° impact strength of 13G1S-U steel
sheets 8, 10, and 12 mm thick) differed significantly
from the original distribution: the experimental values

800 900 o1 b
g 700 = S )
+ 600 700
8 500 600
=
@ 500
= 400 400
E 300 w3 300

200
g 200 127
z 100 57 100

L2 1 L1 P 1 12840 2 1 L1 P 1

0 34 68 102 136 171 205 239 273 307 341

AKCU ™, Jiem’

0 34 68 102136 171 205 239 273 307 341
AKCU ™, Jjem

Fig. 3. Histograms of distribution of impact strength range values AKCU for 13G1S-U steel (sheet thickness — 12 mm),
calculated for three (AKCU) — (a) and two (AKC U, ,:4]0) — (b) samples (one from each batch of controlled products)

Puc 3. TucrorpaMMsl pacrpe/eleHust 3Ha4eHnii pasmMaxos yaaproii Bsskoctd AKCU cranu 13T'1C-V (tonumna mucra 12 mm),
paccuuranusie 1o TpeM (AKCU %) (a) u nBym (AK CU;” 4?) (b) oOpaziam (0T KaXk10¥ MapTHH — €AUHUIIBI KOHTPOIUPYEMOH MPOLYKLIUH)

Table 4. Coefficients of kurtosis E_and asymmetry 4_for samplings of impact strength ranges

A=KCUKCV),, - KCUKCV),,,

of 13G1S-U sheet steel for three samples A

and samplings of possible combinations of pairs (A.u,u ) from the same samples

Tabauya 4. Koadpduunentsl sxcuecca E_u acummerpun A BbIGOPOK BEJIMYHH Pa3MaxoB YIapHOii BA3KOCTH

A=KCUKCV),, - KCUKCV),,,

JucroBoii ctamu 13I'1C-Y ais Tpex od6pa3uos A

U BHIOOPOK BO3MOKHBIX COYeTAHUIl map (Aifjf ) 113 OTHX :Ke 00pasuos

Sheet Skewness and kurtosis KCU Kcye

thickness, mm coefficients A & AL, | AL A B A | AL
A, 2.02 2.40 2.40 2.55 2.48 3.02 2.69 3.25

8 E 5.19 8.17 7.53 8.57 737 | 11.28 | 9.37 | 13.89

A, 1.20 1.67 1.72 1.45 1.75 1.94 1.76 2.26

10 E 1.22 3.14 3.17 2.38 4.55 5.11 4.38 7.39

A, 1.25 1.74 1.58 1.70 1.76 2.11 2.05 2.36

12 E 1.34 3.62 2.56 3.48 3.52 5.72 5.12 7.32
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of the Student’s and Smirnov’s test statistics were no less
than 4.61 and 2.77, respectively (with a significance level
of p <0.0001).

However, when testing the significance of differences
between the pairwise range distributions for KCU#°
and KCV?°, full consistency between the two statistical
tests was no longer observed. In 9 out of the 18 possible
pairwise comparisons (i.e., three combinations — A
A, , and Aj—k — for each of the three sheet thicknesses:
8, 10, and 12 mm, and for both types of impact strength:
KCU* and KCV? for 13G1S-U steel), the risk levels for
the hypothesis of sample difference varied between 0.22
and 0.50. Statistical equivalence was confirmed in these
9 comparisons; in the remaining 9, the samples were
found to differ in 6 and 3 cases at risk levels not exceed-
ing 0.20 and 0.30, respectively (according to at least one
of the two tests), regardless of sheet thickness or type
of impact strength.

Relative to the impact strength values initially
obtained from two samples, the value from the third
sample may occupy a different position along the corres-
ponding impact strength axis — not only to the left or right
of the minimum and maximum values, respectively, but
also between them (if they are not equal), for example,
to the left or right of the median value calculated from
the initial pair of test results).

The positional statistics of the impact strength values
of the third sample KCU,* (relative to the correspond-
ing values of the sample pairs KCUi_4O and KCU;4O) exhi-
bited a fairly typical pattern. For example, in the case
of 13G1S-U steel sheets 12 mm thick, the proportion
of KCU,* values falling below and above the limits
of the impact strength interval defined by individual
sample pairs [KCUf‘O; KCU ;40] was approximately
the same (Fig. 4, a). It is evident that even a slight devia-
tion beyond the interval boundaries can significantly
affect the median-based statistics when they are trans-
formed into mean values — either upward or downward.
When these deviations are more substantial, their influ-
ence becomes even more pronounced. the third sample’s
value fell within the pairwise impact strength interval
[KCU;™; KCU;™] in 373 to 402 cases (36.5—39.4 %
of all batches); of these, 180 to 184 values were lower than
KCcu ™ +Kcu;®

2

and 175 to 202 were higher (Fig. 4, b). Exact matches
with the median values were observed in only 1.6 to 1.8 %
of cases, effectively converting the median into the batch
mean. All other values, to varying degrees, influenced
the batch-level impact strength estimate. This highlights
the potential risks when reversing the process — i.e.,
reducing the number of samples used to assess batch
impact strength from three to two.

However, in steels with pronounced structural hetero-
geneity, even testing three samples may not guarantee

the corresponding median values ¥, =

bl
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objective quality assessments — particularly with regard
to impact strength. This is especially true for steels
retaining cast structure (e.g., large forgings made of heat-
treatable steel such as 38KhN3MFA-Sh or 15Kh2NMFA)
and for high-strength rolled steels with ferrite—pearlite
or ferrite—bainite banded microstructures [7; 20 —22].
The presence of pronounced morphological heteroge-
neity — including non-metallic inclusions (NMlIs) — both
between samples and within individual samples, leads
to a wide spread of impact strength values across the full
range of test temperatures. This introduces uncertainty in
the evaluation of toughness, including the determination
of cold resistance.

In this context, the use of micro-samples appears
promising: if their dimensions are comparable to the scale
of structural heterogeneity, it becomes possible to eva-
luate the cold resistance of individual structural compo-
nents and rank them by associated fracture risk, based
on brittle fracture energy determined through acoustic
emission measurements [7]. This is important for under-
standing the causes of toughness variability observed
under standard testing protocols. It was precisely this
approach that demonstrated that in large forgings
of 38KhN3MFA-Sh heat-treatable steel, brittle fracture
within the —130 to 100 °C range occurs only in the inter-
dendritic regions, whereas below —130 °C, the dendrite
axes themselves also undergo brittle fracture. Variations
in dendritic structure patterns from one impact sample
to another — including their downstream effects on micro-
structure and the morphology of non-metallic inclusions
(NMls) [1] — lead to increased scatter in toughness values
at all test temperatures and reduce the reliability of cold
resistance predictions.

For 15Kh2NMFA steel, such tests have made it pos-
sible to clarify the temperature range of the ductile-to-
brittle transition and relate it to the fracture mechanism
(transcrystalline, intergranular, or mixed). This is crucial
for assessing potential cold resistance degradation during
long-term operation when the number of witness samples
is limited, as well as under conditions with a small num-
ber of samples available during acceptance testing.

The use of this approach proved valuable not only for
evaluating the cold resistance of structural components but
also for assessing the risk associated with structural ano-
malies. For instance, in high-strength pipe steels of strength
grade K65, micromechanical testing made it possible
to localize fracture within an extended interface region
of the metal, accompanied by the formation of large facets
approximately 500 um in diameter each. This was identi-
fied as one of the possible causes of delamination (slate
fracture appearance [20]), and the fracture energy was
evaluated based on acoustic emission measurements [7].

Overall, the findings indicate that several factors —
such as the varying statistical nature of property distri-
butions in acceptance test results (particularly within
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U B IIp€JiciaX 3TOro HUHTEpBajla — OTHOCUTCIbHO MEANAHHOI'O 3HAUYCHUS .ifi =

the examined chronological sequences), differences
in the extent to which property variability is captured
depending on the number of samples tested per product
unit, the potential for conflicting outcomes in hypothe-
sis testing depending on the statistical criteria applied,
and the diversity of mechanisms of technological inheri-
tance embedded in standard production processes (many
of which remain insufficiently studied) [1; 7] — will inevi-
tably and substantially constrain the effective application
of modern software solutions in the development of end-
to-end quality management systems for metal production.

Advancement in this field must be based on a deep
understanding of structural and defect evolution through-
out the entire technological chain, as well as the develop-
ment of digital tools for quantitative analysis of micro-
structures and fracture surfaces, with their integration
into industrial practice to enhance the completeness
of product quality certification. It also requires the appli-
cation of statistical procedures that take into account
the statistical characteristics of the material under inves-
tigation, the identification of domains governed by
dominant types of dependency (within the technological
parameter space), and the evaluation of their combined
effects [7; 15; 19].

Kcu ™ +KkCU;®

5 (), crans 13I'1C-Y, Tommuuna nucra 12 Mmm

[ ConcLusIONs

Based on statistical analysis of representative pro-
duction control datasets for the manufacturing processes
of 13GI1S-U steel sheets (8, 10, and 12 mm thick) and
large forgings made from heat-treatable 38KhN3MFA-Sh
steel, several factors have been identified that account
for discrepancies in quality assessment outcomes during
acceptance testing when different numbers of samples are
used per product unit (batch or forging). These factors
include: variation in the recorded property range (i.e.,
the spread of values); changes in the statistical characte-
ristics of property value distributions (as reflected by
variations skewness and kurtosis coefficients); and
the size of the analyzed dataset.

It has been shown that, in the statistical analysis of pro-
duction control databases, proper data preprocessing plays
an important role in eliminating side effects that reduce
the informativeness of acceptance testing results. Such pre-
processing should aim to remove the influence of trends,
seasonal fluctuations, outliers, and similar factors.

It was found that reducing the number of samples
per batch from three to two in the acceptance testing
of 13G1S-U steel sheets results in a 17 — 20 % increase
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in the frequency of minimum impact strength range (A)
values (0 to 34 J/cm?) and a 2.0 — 3.5-fold decrease in
the number of ranges within the 35 to 136 J/cm? interval.
This leads to a distorted assessment of toughness hete-
rogeneity in the steel. For 38KhN3MFA-Sh steel, even
greater distortions can be expected due to the pronounced
heterogeneity in structural morphology (including dend-
ritic patterns, microstructural features, and nonmetallic
inclusions).

When the number of tests per product unit varies —
resulting in changes in the distribution pattern of quality
indicators within the sample as a whole — the application
of statistical hypothesis testing (e.g., the Student’s and
Smirnov’s tests) may yield inconsistent results across dif-
ferent sample sets. This factor should be carefully consi-
dered when using modern software tools (such as big data
analytics, machine learning, and related technologies) for
retrospective analysis of production control databases in
metallurgy.
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