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Abstract. Using molecular dynamics simulation, the authors studied the influence of misorientation angle and energy of tilt grain boundaries with
the misorientation axes (100), {110) and (111) on the melting temperature and nature of early initiation of melting at grain boundaries in austenite.
It is shown that with gradual heating, melting begins from the grain boundaries, where there is a violation of the crystal structure and, accordingly,
the atoms are located in less deep potential wells. In the case of large—angle boundaries, melting begins simultaneously along the entire boundary,
in the case of small-angle boundaries — in the cores of grain-boundary dislocations. Dependences of the melting temperature of the simulated calcula-
tion cells on the angle of grain misorientation and excess energy were obtained. For the misorientation axes (100), (110) and (111), the results were
similar. In the region of small misorientation angles (less than 15°), the melting point decreases almost linearly with increasing angle, then, for large-
angle boundaries, the decrease becomes less intense. These dependences correlate with the energy of grain boundary formation or with the associated
excess energy of the calculation cell. The main quantitative criterion determining the effect of defects on a decrease in melting temperature is excess
energy, that is, the energy difference between the considered structure and the ideal crystal, which can also be interpreted as the energy of the consi-
dered structure formation. The melting point decreases linearly with increasing excess energy. Obviously, the effect of grain boundaries on the melting
point becomes significant only for materials with a very high content of grain boundaries, for example, for materials with a nanocrystalline structure.
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AnHomayus. C IOMOIIBIO MOJIEKY/ISPHO-IMHAMUUECKOTO MOJESIMPOBAHUS NIPOBEIEHO HCCIIENOBAHUE BIMAHMS YINIA PA30PUEHTALMM M SHEPIUH
TPaHUI] 3epeH HAKIIOHA C OCSMHU Pa30pUEHTAINU <100\, <110> u <111> Ha TeMIeparypy IUIaBICHUs U XapakTep HadaJlbHOW MHUIMALINY [UIaBICHUS
Ha TpaHulle 3epeH B aycteHure. [lokasaHo, YTO IpH MOCTENIEHHOM HArpeBaHMH IUIABJICHHE HAYMHAECTCS OT I'PAHMIL] 3€PEH, TaM, I1e UMEIOTCs
HapyIICHUs KPUCTAJIMYECKOH CTPYKTYpHI H, COOTBETCTBEHHO, aTOMbI HAXOIATCSA B MEHee IIyOOKHMX MOTEHIMaNbHBIX AMax. B ciydae Gomble-
YIIOBBIX IPaHULL IJIABJIEHUE HAYMHACTCSI OJHOBPEMEHHO BJIOJIb BCEH IPaHMIIBI, B CIyuae MajOyIJIOBBIX — B sApax 36pHOrPaHUYHBIX JUCIOKALMIA.
ITomyueHbl 3aBUCHMOCTH TeMIIEPaTyPhI IIaBICHUSA MOIEIHPYEMBIX PACUETHBIX SYEeK OT yIVIa PA30PHEHTAIMH 3epPeH U N30bITouHON SHeprun. Js
oceit pasopuentaru (100), (110) u (111) pe3synsTaTs! okasanuch aHATOTHYHBEIMI. B 061acTH MaybiX ymios pazopuentaruu (Menee 15°) Temre-

© 1. V. Zorya, G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, 2025 139


https://doi.org/10.17073/0368-0797-2025-2-139-147
https://fermet.misis.ru/index.php/jour/search/?subject=molecular dynamics
https://fermet.misis.ru/index.php/jour/search/?subject=melting
https://fermet.misis.ru/index.php/jour/search/?subject=grain boundary
https://fermet.misis.ru/index.php/jour/search/?subject=misorientation angle
https://fermet.misis.ru/index.php/jour/search/?subject=austenite
mailto:zorya.i%40mail.ru?subject=
mailto:zorya.i%40mail.ru?subject=

N3BECTUA BY30B. YEPHASA METAJIJIYPTUA. 2025;68(2):139-147.
3opst U.B,, [lonemaes I'M. u dp. UnuLMauys nJaBJeHUA Ha TPAaHMIAX 3ePeH HaKJ0OHA B ayCTEeHHUTE B 3aBUCUMOCTH OT yTJla Pa30pHeHTaluu

parypa IUIaBJI€HHsl C POCTOM YIVIa MajaeT MMOYTH JIMHEHHO, 3aTeM, 1 OOJbIICYIIOBBIX IPaHULl, CHHXKEHHE CTAHOBHUTCS MEHEEe MHTCHCHBHBIM.
OTU 3aBUCHMOCTH KOPPEIHPYIOT C SHEpPrHeil 00pa30BaHUs TPaHHI] 3¢pPeH WIH CO CBA3AHHOH ¢ HeH BEIMYMHOM N30BITOYHON SHEPTUH PAacueTHOH
sueiiky. [TIaBHBIM KOJIMYECTBEHHBIM KPUTEPHEM, ONPEIEISIONUM BIMsSHUE Ae(EKTOB HA CHUKEHHE TEMIIepaTyphl IUIABICHHS, SBISETCS M30bI-
TOYHAsl SHEPIUs, TO €CTh PA3HOCTh YHEPTUI paccMaTpUBAEMON CTPYKTYPhI U HIEaIbHOTO KPUCTAIA, KOTOPYIO €Il MOKHO HHTEPIPETUPOBATh
KaK SHEpruio oOpa3zoBaHHs paccMaTpuBaeMol CTpyKTypbl. Temmneparypa ruiaBiaeHHs JIMHEHHO YMEHBIIAETCS ¢ POCTOM M30BITOUHOH YHEPrUu.
OueBUIHO, YTO TaHHBIH 3((EKT, TO €CTh BINIHHIE TPAHUIL] 3¢PEH Ha TEMIIEpaTypy ILIaBICHHUS, CTAHOBHTCS CYIIECTBEHHBIM TOIBKO IS MATEPHAIIOB
C OYEHb BBICOKHM COZIEPKaHUEM I'PAHULL 3€PEeH, HAPUMED, I MaTepHAIoOB ¢ HAHOKPUCTAIUIMYECKOH CTPYKTYpPO.
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- INTRODUCTION

In recent decades, considerable attention has been paid
to nanocrystalline materials, which include polycrystals
with an average grain size of less than 100 nm. These
materials exhibit size-dependent physical and mechani-
cal properties, primarily due to a significantly higher
volume fraction of grain boundaries, triple junctions, and
other defects compared to conventional coarse-grained
counterparts [1 — 3]. Ultrafine grain sizes are achieved
using various methods, which typically include severe
plastic deformation. Such materials can also be pro-
duced by sintering nanopowders, vapor-phase condensa-
tion, or other nanostructuring methods. A characteristic
feature of nanocrystalline materials is their highly non-
equilibrium structure, associated with a significant level
of excess (or stored) energy [1 — 3]. Excess energy, i.e.,
the difference between the free energy of the material and
that of an ideal crystal at the same temperature (or, in
other words, the energy that can potentially be released
during structural transformations such as recrystalliza-
tion), in nanocrystalline materials arises from the high
density of defects: grain boundaries, triple junctions,
dislocations, disclinations, and others. The specific set
and types of defects largely depend on the method used
to produce the nanocrystalline structure and the sub-
sequent treatment [1 — 4].

The unique properties of nanomaterials are largely
determined by the high volume fraction of surface area
and other interfaces (interphase or intergranular boun-
daries). One of these properties, which is important
from both an application and manufacturing standpoint,
is the dependence of melting temperature on effective
size: grain size, film thickness, or nanoparticle diameter.
The dependence of the melting point of nanoparticles on
their size is the most thoroughly studied. It is currently
well established that the melting temperature of spherical
nanoparticles is inversely proportional to their diameter,
a finding demonstrated both experimentally [5 — 9] and
through molecular dynamics (MD) simulations [10 — 14],
as well as supported by theoretical models [15 — 20].
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As for materials with a nanocrystalline structure, stu-
dies [21 —25] employing MD simulations have shown
that melting in such materials is not a homogeneous
process: it usually starts from free surfaces and grain
boundaries. A reduction in the average grain size leads
to a decrease in the melting temperature of nanocrystal-
line silver [22; 23] and aluminum [24; 25]. Similar fin-
dings were reported in [14; 26], where nanocrystalline
nickel particles exhibited a lower melting point compared
to monocrystalline counterparts.

The phenomenon of melting point reduction as a func-
tion of average grain size in nanocrystalline materials, in
comparison with monocrystalline nanoparticles, is more
complex and less thoroughly understood. This complexity
arises from the presence of not a single type of defect
(such as particle surfaces), but rather a broad spectrum
of grain boundaries with varying energies, along with
other structural defects. This study investigates the influ-
ence of the misorientation angle and the corresponding
energy of tilt grain boundaries on the melting temperature
and the mechanism of melting initiation at the boundary.
Tilt boundaries with misorientation axes <100>, <1 10> and
<1 1 1> are examined. Austenite is chosen as the model
material due to its widespread practical applications.

[l MODEL DESCRIPTION

To describe interatomic interactions in the molecu-
lar dynamics model, an embedded atom method (EAM)
potential was employed [27]. This potential was deve-
loped based on comparisons with experimental data and
ab initio calculations of various properties of austenite.
It reliably reproduces a wide range of mechanical and
structural-energetic properties and has been successfully
validated in simulations of various processes, including
melting [27 — 29].

The calculation cells had a parallelepiped shape with
approximate dimensions of 9.9x10.8x13.5 nm and con-
tained about 118,000 atoms (Fig. 1). A tilt grain boun-
dary was introduced at the center of the calculation cell
by rotating two crystals, i.e., the two halves of the cell, by
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a misorientation angle 6 around the <100>, <110> or <111>
axis, which coincided with the x-axis in Fig. 1. To keep
the grain boundary positioned at the center of the calcula-
tion cell throughout the simulation, fixed boundary condi-
tions were applied along the z-axis (at the top and bottom
of the calculation cell in Fig. 1): atoms shown in dark
gray remained stationary during the simulation. Periodic
boundary conditions were applied along the other direc-
tions. As a result, two parallel, identical grain boundaries
were present in the calculation cell. Fig. 1 shows an exam-
ple of the calculation cell visualized using the Common
Neighbor Analysis (CNA) method [30], highlighting
the presence of two boundaries — one in the center and
one at the edge of the cell — with a misorientation axis
of <111> and a misorientation angle of 30° (hereafter
referred to as <1 1 1> 30°). After the rotation of the crystals
and the removal of overlapping atoms, the structure was
relaxed for 20 ps at a constant temperature of 1000 K.
During relaxation, atoms shifted into positions cor-

Fixed boundaries

e

o Crystal (FCC)
© Amorphous
Fixed

Grain boundary 1
% Grain boundary 2 §

Periodic boundaries
Periodic boundaries

Fig. 1. Example of a calculation cell containing
two tilt boundaries (111) 30°
(blue — atoms whose immediate environment corresponds
to the FCC crystal lattice of austenite;
white — crystal lattice was not identified;
dark gray — atoms remained stationary during the simulation)

Puc. 1. Ilpumep pacyeTHOMH siueiikH, copeprarei
nBe TpaHmisl Hakmosa (111) 30°
(rosryObIM LIBETOM T1OKa3aHbl aTOMBI, OJIMKalilee OKpyKeHHEe KOTOPbIX
cootBercTBYyeT [ LIK KpHcTanmnueckon penieTke ayCTeHUTa;
0eJbIM — KpUCTAJUINUECKasl PeIleTKa He MACHTU(UIMPOBAHA;
TEMHO-CEPBIM — aTOMbI, KOTOPbIE OCTABAIMCH HETIOIBHIKHBIMH
B TEUECHHE MOJIEIUPOBAHMS)

responding to the local energy minimum. Fig. 1 shows
the calculation cell after structural relaxation.

The misorientation angle 0 for the <100>, <110> and
(111) grain boundaries was varied from 0° to 30°. Thus,
half of the boundaries considered (up to 15°) corres-
ponded to small-angle grain boundaries, i.e., bounda-
ries with clearly distinguishable geometrically neces-
sary grain-boundary dislocations, while the other half
(above 15°) represented large-angle grain boundar-
ies. As will be shown below, the main characteristic
influencing the melting process is the grain boundary
energy, which is typically nearly constant for large-
angle boundaries. This is why, for example, most angles
between boundaries at triple junctions tend to be close
to 120° [31; 32]. For this reason, the misorientation angle
was limited to 30° for all types of tilt boundaries consi-
dered in the present study.

The model employed an NPT ensemble in combination
with a Nosé—Hoover thermostat. During melting, the spe-
cific volume increases due to the destruction of the crys-
tal lattice; therefore, it was important to maintain constant
pressure at zero. Thermal expansion with increasing tem-
perature was taken into account, including for the fixed
regions at the boundaries of the calculation cell (the dark
gray regions in Fig. 1). A time integration step of 2 fs was
used in the molecular dynamics simulations.

To determine the melting temperature, the gradual
heating method was applied, involving the construction
of dependence of the average atomic potential energy
on temperature — a commonly used approach in simi-
lar studies [10 — 14; 26; 33 — 35]. The temperature was
increased linearly at a rate of 10'2 K/s by correspondingly
scaling the magnitudes of atomic velocities at regular
time intervals (5 ps in this case).

[ RESULTS AND DISCUSSION

Fig. 2 shows examples of the dependencies of the ave-
rage atomic potential energy on temperature for calcula-
tion cells with (111) 6° (curve 3) and (111) 30° (curve 4)
grain boundaries, as well as for monocrystalline aus-
tenite (curves / and 2), during gradual heating at a rate
of 10'? K/s in the range from 1500 to 2300 K. As the tem-
perature increases, the average atomic energy within
the same phase increases almost linearly due to enhanced
thermal vibrations of the atoms and thermal expansion.
A sharp rise in the average atomic energy on the plots
corresponds to a phase transition, i.e., melting.

As previously noted, the structure in the fixed boun-
dary regions (Fig. 1) remained crystalline even after
melting, which clearly affects the melting behavior and
temperature of the entire calculation cell. Neverthe-
less, the use of fixed boundaries was necessary to pre-
serve the grain boundaries with the initially assigned
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Fig. 2. Dependences of the average potential energy of an atom
on temperature when heated at a rate of 10" K/s:
1 — for monocrystalline austenite with boundaries fixed along z axis;
2 — with periodic boundary conditions on all sides;
3 — for a computational cell with two tilt boundaries (111) 6°;
4 — with two tilt boundaries (111) 30° at corresponding melting

temperatures T, T,, T; and T,

Puc. 2. 3aBUCUMOCTH Cpe/IHEeW MTOTEHIIMAIBLHOI SHEPTUH aToMa
OT TEMIIEPATYpbI P HAPEBAHKUH CO cKopocThio 1012 K/e:

1 — U1t MOHOKPHCTAJIIMYECKOrO ayCTeHHUTA € 3a()MKCUPOBAHHBIMU
BJIOJIb OCH z FPaHULIAMU; 2 — C IEPUOANYESCKUMU TPAaHUYHBIMU
YCIIOBUSIMU CO BCEX CTOPOH; 3 — ISl pACUETHOM SUCHKH C IBYMS
rpannnamu Haxtona (111) 6°; 4 — ¢ xByms rparmmamu Hakmosa (111) 30°

NpU COOTBETCTBYIOLIMX TeMmneparypax miasnenus 1, T, T, u T,

characteristics within the cell throughout the simula-
tion. For monocrystalline austenite, i.e., a calculation
cell without any defects, an additional analysis was car-
ried out to evaluate the influence of fixed boundaries on
the melting temperature. Fig. 2 presents the temperature
dependence of the average atomic energy for the mono-
crystal: with fixed boundaries (curve /) and with periodic
boundaries on all sides (curve 2). As can be seen, melt-
ing in the presence of fixed boundaries indeed occurred
at a higher temperature compared to the case with fully
periodic boundary conditions. However, this difference
was minor and had little effect on the qualitative results
of the study.

In the presence of grain boundaries within the calcu-
lation cell, melting proceeded heterogeneously, meaning
that it was initiated at the grain boundary, after which
the solid—liquid front advanced from the boundary toward
the center of the grains at a finite velocity, which is known
to depend on temperature. The velocity was on the order
of several tens of meters per second [36; 37]. Static two-
phase coexistence, i.e., the simultaneous presence of part
of the calculation cell in the liquid state and another part
in the crystalline state for a relatively long period, was not
observed: the solid—liquid front consistently advanced in
one direction or another. Therefore, the melting tempera-
ture was determined based on the onset of the phase tran-
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sition (indicated by arrows in Fig. 2), which in turn was
identified as the intersection point of the linear approxi-
mations before and after the start of melting.

Fig. 2 clearly shows that the calculation cell contain-
ing a large-angle <1 1 1> 30° grain boundary melts at a sig-
nificantly lower temperature (1835 K) than the one with
the small-angle <111> 6° boundary (2013 K), confirming
the influence of grain boundary type on melting behavior.
The grain boundary energy, and consequently the degree
of disruption of the crystalline structure, is higher
in the case of the large-angle boundary.

Fig. 3 shows a calculation cell in the yz-plane con-
taining two large-angle <111> 30° boundaries at different
stages of melting, visualized using a structure identifica-
tion tool based on the Common Neighbor Analysis (CNA)
method [30]. This method allows each atom to be clas-
sified according to its local crystalline environment
by analyzing the arrangement of its neighboring atoms. In
the present case, an atom was considered to belong to an
FCC lattice if more than 75 % of its nearest neighbors
were located near the lattice sites of an ideal FCC crystal
(taking into account thermal expansion), within a tole-
rance of 25 % of the first coordination sphere radius.
Atoms that did not satisfy these conditions, or the condi-
tions for classification as HCP, were considered to be part
of an amorphous structure (shown in white in Fig. 3).

Fig. 3, a shows the relaxed initial structure of the cal-
culation cell with two parallel (111) 30° boundaries.
In the case of a large-angle boundary, the defect appears
almost continuous: disruption of the crystalline structure
is observed along the entire boundary. As the tempera-
ture increased, melting began almost uniformly along
the boundary (Fig. 3, b), except near the fixed boundaries
(at the top and bottom of the calculation cell), which is
expected, as the influence of the constrained crystalline
structure at those boundaries becomes significant in those
regions.

With further temperature increase, the solid—liquid
front propagated from the grain boundaries into the bulk
of the material (Fig. 3, c¢). The number of atoms in
the amorphous phase (shown in white) increased
accordingly. It can be observed that melting initiation
at the boundary occurred even at a lower temperature than
the melting point determined from the energy — tempera-
ture plot for the entire calculation cell (Fig. 2). This is
due to the fact that the melting temperature of the entire
calculation cell is influenced by the grain boundary den-
sity. A similar dependence was observed in [22 — 25] as
the average grain size in nanocrystalline silver or alumi-
num decreased, the melting temperature also decreased.
In the present case, this implies that, for example, an
increase in the size of the cell along the y-axis would
reduce the influence of the grain boundary on the overall
melting temperature.
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f o Crystal (FCC)
# © Amorphous
Fixed

a

Fig. 3. Melting from large—angle grain boundaries (111) 30° during heating at a rate of 10'? K/s:
a — initial structure of the calculation cell at yz plane; b and ¢ — structure of the calculation cell when temperature reaches 1810 and 1830 K

Puc. 3. [naBinenne ot GoNbIIeyNIOBEIX rpanul 3epen (111) 30° B mponecce HarpeBanus co ckopocthio 10'2 K/c:
a — HayalbHasl CTPYKTYpa PaCUeTHON SIMEHKH B INIOCKOCTH yz; b U ¢ — CTPYKTypa pacuyeTHOH sueiiku npu qoctmkenun temmeparypst 1810 u 1830 K

Melting initiates at grain boundaries because the crys-
talline structure is more easily disrupted in their vicinity.
This occurs because atoms located in defect regions are
situated in shallower potential wells compared to those in
a perfect crystal, and can escape more easily due to ther-
mal vibrations. Atoms located near the solid-liquid inter-
face on the crystalline side are also found in relatively
shallow potential wells, as the atomic arrangement on
the molten side is more disordered. In addition, the melt
exhibits more intense self-diffusion and a greater amount
of free volume compared to the crystal. These factors also

@ Crystal (FCC)
© Amorphous
e Fixed

contribute to easier disruption of the crystal structure near
the interface than within the bulk of the crystal, and thus
drive the motion of the solid—liquid front.

Fig. 4 shows a calculation cell containing two small-
angle <111> 6° grain boundaries at different time points-
during the heating process. The structure of small-angle
tilt boundaries is known to consist of an array of geo-
metrically necessary grain-boundary dislocations, pro-
vided that no additional defects are introduced. Fig. 4, a
displays the initial structure of the calculation cell, where
the cores of the grain-boundary dislocations are clearly

Fig. 4. Melting from small-angle grain boundaries (111) 6° during heating at a rate of 10'2 K/s:
a — initial structure of the calculation cell at yz plane; b and ¢ — structure of the calculation cell when temperature reaches 1980 and 2000 K

Puc. 4. Tlnasnenue oT MaToyTIoBhIX Tpamm 3eper (111) 6° B mporiecce Harpesanms co ckopocTsio 1012 K/c:
a — HavyaJibHas CTPYKTYpa PacueTHOM SIUCHKH B INIOCKOCTH )z; b M ¢ — CTPYKTypa pacueTHOM siueiiku npu JocTikeHun Temneparypsl 1980 u 2000 K
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visible. These appear as small regions of disrupted crys-
talline order (white atoms) periodically arranged along
the boundaries. For a misorientation angle of 6°, the dis-
tance between dislocations is sufficiently large, and it
is clearly seen that the structure between them remains
fully crystalline, with no visible disorder. Melting initia-
ted from the dislocation cores (Fig. 4, b) as the crystal-
line structure began to break down. In this case, melting
began at a higher temperature compared to that observed
for the large-angle grain boundary. As the temperature
continued to increase, some amorphous regions grew
more rapidly, merged, and eventually spread throughout
the entire volume.

Fig. 5, a shows the dependences of the melting point T,
of the calculation cell on the misorientation angle 6 for
all grain boundaries considered in the study. The resulting
dependences were identical for all three grain boundary
misorientation axes <100>, <110> and <111>. It should be
noted that special misorientation angles, i.e., those charac-
terized by a high degree of atomic coincidence between
adjacent grains, were not considered in this study.

2300

2200 )
2100
2 2000
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1800

1700 1 1 1 1 1
8

7k 3 \

6_

107 eV

a

0 5 10 15 20 25 30
0, deg

Fig. 5. Dependences of the melting point of the calculation cell 7, (a)
and the excess energy per atom, AE, (b) on misorientation angle:
1-(100); 2 —(110); 3 —(111)

Puc. 5. 3aBHCHMOCTH TEMIICPATyPhI IUIABICHUS PACUCTHOMH
sueiiku T, (a) n u30bITOuHOM 5HEprun AE,, ipuxosencs
Ha o7vH atoM (b), OT yIiia pa3opueHTanuy 0:
1-(100); 2 —(110); 3 —(111)
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As the misorientation angle 0 increases in the low-
angle range (less than 15°), the melting point decreases
almost linearly. For large-angle grain boundaries,
the decrease becomes less pronounced. The obtained 7, (0)
dependences correlate with the grain boundary energy or
with the associated value of excess energy of the calcula-
tion cell. Fig. 5, b shows the dependences of the excess
energy per atom AE , on the misorientation angle 0. This
excess energy was calculated as the difference between
the average potential energy per atom in a calculation cell
containing a pair of the studied grain boundaries, and that
in an ideal crystal containing the same number of atoms.

The obtained AE,(0) dependences are typical of the
angular dependences of grain boundary energy [38 — 40].
Initially, up to approximately 6 = 15° (i.e., for small-angle
grain boundaries), the excess energy increases almost
linearly, which is due to the linear increase in the density
of grain-boundary dislocations. At larger misorientation
angles (above ~15°), the dislocation cores merge into
a single extended defect, and the energy increases more
slowly with increasing 6.

The obtained dependencies indicate a correlation
between T and AE,. To verify this, the T (AE,) depen-
dence was plotted (Fig. 6). Within the studied range of A
E,, values, the relationship is approximately linear and
follows the equation 7, = -49,828AE, + 2,135 (shown as
a dashed line).

Thus, it can be concluded that the main quantita-
tive criterion determining the influence of defects on
the reduction of the melting point is the excess energy —
that is, the difference between the energy of the structure
under consideration and that of an ideal crystal. This
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Fig. 6. Dependence of the melting point
on the excess energy per atom:
®, W, A — results of the model for misorientation axes (100), (110)
and (111), dashed line — linear approximation

Puc. 6. 3aBUCHMOCTb TeMIICPATyphI [LIABICHHS
OT M30BITOYHON SHEPTUH, TIPUXO/ISIIECHCS Ha OIUH aTOM:
©®, l, A — pesynsTaTHI MOZIETH IS Oceii pasopuenTanuu (100), (110)
u (111), ITpuXOBAs THHUS — THHEHHAS ATTPOKCHMAIIHS
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quantity can also be interpreted as the formation energy
of the given structure or as the energy potentially released
during structural transformation, such as recrystallization.
The observed linear dependence is likely due to the fact
that the excess energy reflects the reduction in work
required to break the crystal lattice during melting — or,
put differently, the corresponding decrease in the mate-
rial’s heat of fusion.

- CONCLUSIONS

Molecular dynamics simulations were used to inves-
tigate the effect of the misorientation angle and grain
boundary energy of tilt boundaries with misorientation
axes <100>, <110> and <111> on the melting temperature
and the nature of melting initiation at grain bounda-
ries in austenite. The results show that during gradual
heating, melting begins at the grain boundaries, where
the crystal structure is disrupted and atoms are located
in shallower potential wells. For large-angle bounda-
ries, melting is initiated simultaneously along the entire
boundary, whereas for small-angle boundaries, it starts
at the cores of grain-boundary dislocations. Dependences
of the melting temperature of the simulated calculation
cells on the grain misorientation angle and excess energy
were obtained. Similar results were observed for the
<100>, <110> and <111> misorientation axes. In the range
of low misorientation angles (less than 15°), the melting
point decreases almost linearly as the angle increases.
For large-angle boundaries, the decrease becomes less
pronounced. These dependences correlate with the grain
boundary energy or the corresponding excess energy
of the calculation cell. The key quantitative parameter
determining the influence of defects on the reduction
of the melting point is the excess energy — that is, the dif-
ference between the energy of the structure under consi-
deration and that of an ideal crystal. This value can also
be interpreted as the formation energy of the given struc-
ture. A linear decrease in melting point with increasing
excess energy was observed. It is clear that this effect —
the influence of grain boundaries on the melting point —
becomes significant only in materials with a very high
content of grain boundaries, such as those with a nano-
crystalline structure.
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