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Abstract. Alloys of the Cu—Ni—Mn system are used in many areas, and for some applications (watchmaking, dentistry, precision mechanics) they
must have high hardness. A state of high hardness can be achieved by two-stage heat treatment — quenching and subsequent aging. To obtain a good
set of performance characteristics, decomposition of the solid solution must proceed through a continuous mechanism, which can be regulated
by additional alloying (for example, chromium) and aging parameters. In this work, we studied the influence of quenching and aging modes on
microhardness of S6DGNKh (Cu20Ni20Mn2Cr) alloy. It was shown that quenching from temperatures of 700 — 750 °C provides higher micro-
hardness values than quenching from 800 °C. By varying the temperature and duration of aging, it was found that the maximum microhardness is
observed at aging temperatures of 475 — 500 °C. Metallographic analysis shows that in this case, the supersaturated solid solution of Mn, Ni and Cr
in copper decomposes into a less supersaturated solid solution and the precipitation of MnNi intermetallic particles occurs according to a conti-
nuous mechanism. The change in microhardness of 56DGNKh alloy depending on the aging time is multi-stage: its increase at short exposures is
replaced by a subsequent decrease at increasing exposure with a clearly defined maximum or “plateau” between these two parts of the graph, and
this type of dependence is observed at all aging temperatures. X-ray diffraction phase analysis shows that during the aging process, concentra-
tion of the solid solution decreases and MnNi particles are formed, the crystal lattice period of which differs from the period of the solid solution
by 50 pm. The observed patterns of changes in hardness during the aging process are explained from the standpoint of the general theory of decom-
position of supersaturated solid solutions. The maximum increase in microhardness (up to 450 kgf/mm? versus 130 — 160 kgf/mm? in the state
after quenching) is achieved at a coherent or semi-coherent interface between MnNi particles and a Ni-based solid solution. This is observed after
quenching from 750 °C and aging at 475 °C for 10 h.
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AnHomayus. Crinasel cuctembl Cu—Ni—Mn HaxoAsT NpUMEHEHHE BO MHOTHX OONACTSAX M Ul HEKOTOPBIX W3 HUX (YacoBOE MPOU3BOJICTBO, CTOMA-
TOJIOTHSI, TOYHASE MEXaHHKa) JODKHBI 00J1a1aTh BBICOKOH TBEpAOCThI0. COCTOSIHHE C BHICOKOH TBEPAOCTHIO JOCTUTACTCS JBYXCTAAUITHON TEPMHU-
YeCcKoil 00paboTKOW — 3aKaJKOW W MOCISAYIONMM CcTapeHueM. J{JIs MojydyeHus XOpOIIero KOMIUIEKCA HKCIUTYaTallMOHHBIX XapaKTEePHUCTHK
pacmaz TBepAOro pacTBOpa JOJDKEH HITH [0 MEXaHHU3MY HEMPEpBIBHOTO pacrajga, YTO MOXKHO PErylHpOBATh JOMOIHUTEIBHBIM JIETHPOBAHHEM
(HampuMep, XpOMOM) M TTapaMeTpaMy peXXuMa crapeHus. B pabore n3yueHo BIUSHUE PSKUMOB 3aKaIKi M CTAPEHUsI HA MUKPOTBEPJIOCTD CILIaBa
56/I'HX. IToka3ano, uto 3akanka ot temreparyp 700 — 750 °C obecrieunBaeT OOJIbIINE 3HAYCHUS MUKPOTBEPAOCTH, 4eM 3akaika oT 800 °C.
BapbupoBaHueM Temreparypsl M JUIMTEIBHOCTH CTaPEHUs HaliIeHO, 4TO MAKCHMYM MHKPOTBEPIOCTH HAOIIOAASTCS P TEMIIEpaTypax cTapeHus

44 © M. Yu. Belomyttsev, M. A. Mikhailov, D. A. Kozlov, A. M. Mikhailov, I. . Karavatskii, 2025


https://doi.org/10.17073/0368-0797-2025-1-44-50
mailto:myubelom@yandex.ru
mailto:myubelom@yandex.ru
https://fermet.misis.ru/index.php/jour/search/?subject=copper alloy
https://fermet.misis.ru/index.php/jour/search/?subject=heat treatment
https://fermet.misis.ru/index.php/jour/search/?subject=quenching
https://fermet.misis.ru/index.php/jour/search/?subject=aging
https://fermet.misis.ru/index.php/jour/search/?subject=microhardness
https://fermet.misis.ru/index.php/jour/search/?subject=structure
https://fermet.misis.ru/index.php/jour/search/?subject=X-ray phase analysis
https://fermet.misis.ru/index.php/jour/search/?subject=decomposition of solid solution
https://doi.org/10.17073/0368-0797-2025-1-44-50
mailto:myubelom%40yandex.ru?subject=
mailto:myubelom%40yandex.ru?subject=

IZVESTIYA. FERROUS METALLURGY. 2025;68(1):44-50.
Belomyttsev M.Yu., Mikhailov M.A., and etc. Influence of heat treatment modes on the properties of 56DGNKh (Cu20Ni20Mn2Cr) alloy

475 — 500 °C. Meramnorpaduieckuii aHaiIu3 MOKA3bIBACT, YTO TIPU HTOM TIPOUCXOJUT paciia]] IepechIeHHOro TBepaoro pactsopa Mn, Ni u Cr
B ME/IM Ha MEHEe IePEeChICHHBIN TBEP/IbIil PACTBOP M BBIICICHHE YacTHIl HHTepMeTaiuinaa MnNi UIeT 1o MeXaHH3My HEeNpPEepPhIBHOTO PacIaia.
W3menenne mukporBepaoctu ciuiasa S6/ITHX B 3aBUCMMOCTH OT BpEeMEHH CTapeHMsi MHOTOCTauiHO. Ee pocT mpu HeOOIBIINX BBLICPKKAX
CMEHSIETCSI TIOCIISTYOIMM CHI)KSHHUEM NP YBEITMYCHUH BBLICPIKKU C OTUCTIMBO BBIPAKEHHBIM MAKCHMYMOM JIHOO «IUIATO» MEX/LY STHMH JBYMS
yacTsiMu rpaduka. Takoi xapakrep 3aBUCHMOCTH HaOJIIOIaeTCsl TIPH BCEX TEMIIEpaTypax CTapeHus. PEHTTeHOCTPYKTYpHBIH (a30BbIil aHAIN3 ITOKA-
3BIBACT, YTO B IIPOIIECCE CTAPEHHUS IIPOUCXOUT YMEHbIICHNE KOHIIEHTPALIMU TBEPIOT0 pacTBopa U 00pazoBanue yactui; MnNi, meproj KpucTaiu-
YECKOW PELIeTKH KOTOPBIX OTIIMYAeTCs OT Mepruojia TBepaoro pacteopa Ha 50 nM. HabmonaeMblie 3akOHOMEPHOCTH U3MEHEHHUSI MUKPOTBEPIOCTH
B TIPOIIECCE CTapeHHs: OOBSCHEHBI C TIO3UIMH OOIIeH TEOPHH paciaja MepechlieHHbIX TBEPIbIX PACTBOPOB. MaKkCHMyM HPHPOCTa MHKPOTBEP-

noctu (1o HV 0,5 = 45 kre/mm? nporus HV 0,5 = 130 —

160 krc/MM? B 3aKaJ€HHOM COCTOSIHUM) JIOCTHTAETCs NP KOTEPEHTHOM MM MOJTyKOTe-

PEHTHOI! rpanune pasnena dactuir MnNi U TBepIoro pacTBopa Ha OCHOBE HHKeJsl. DTo HalmogaeTces nocie 3akaiku ot 750 °C u crapeHus npu

475 °C B Teuenue 10 4.

Katoyesvle cn08a: crinaBbl M, TepMUYecKas 00paboTKa, 3aKajka, CTapeHHe, MUKPOTBEPAOCTb, CTPYKTYPa, PEHTICHOBCKHUH (ha30BbIi aHAH3, paca
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- INTRODUCTION

Alloys of the Cu—Ni—Mn ternary system are used
in watchmaking for the manufacture of high-precision,
small-sized components. They are also employed as
high-temperature brazing alloys for brazing components
with a high coefficient of linear expansion (CLE), such
as glass. Additionally, they are used as dental materials
for crowns and bridges due to the similarity of their CLE
to that of tooth tissues. For application in some of these
fields, they must possess sufficiently high hardness [1].

Despite the existing research on the Cu—Ni—Mn ter-
nary system, some of its alloys remain insufficiently stu-
died. At present, they are considered promising for appli-
cations in precision mechanics, electronics, and medicine
due to their excellent corrosion resistance, stable coeffi-
cient of linear expansion (CLE), adequate elasticity, and
valuable aesthetic properties.

The aim of this study is to investigate the effect of va-
rious heat treatment modes on the mechanical properties
of 56DGNKHh alloy.

Alloys of the Cu—Ni—Mn system can exist in two
states: metastable and stable [2; 3]. After rapid cooling
from temperatures not exceeding 910 °C they exhibit
the structure of a supersaturated solid solution of nickel
and manganese in copper and remain in a metastable
state. Heating the metastable state leads to the forma-
tion of a stable two-phase structure, consisting of a solid
solution of nickel and manganese in the copper lattice
and a 0-phase, which is a homogeneous ordered solid
solution that can be represented by the general formula
MnNi [4; 5].

Fig. 1 shows a segment of the isothermal section
of the Cu—Ni—Mn ternary phase diagram at 450 °C.
The line of equal mass fractions of nickel and manganese
also represents the line of minimal copper solubility in
the MnNi compound. In alloys with compositions lying
on this line, the amount of 6-phase is at its maximum.
Based on this, alloys with equal nickel and manganese

contents, specifically 60 % Cu — 20 % Ni —
considered technically promising [6; 7].

20 % Mn, are

An important factor influencing the structural strength
of the S6DGNKh alloy (i.e., the favorable combina-
tion of strength, ductility, and hardness) is the structure
of the 0-phase. Depending on the temperature at which
it forms, the 0-phase may develop either through a dis-
continuous decomposition mechanism or a continuous
decomposition mechanism of the supersaturated solid
solution [8]. Continuous decomposition results in a fine-
dispersed structure uniformly distributed throughout
the original copper grain, whereas discontinuous decom-
position promotes the growth of 6-phase precipitates
from the grain boundaries, which reduces the mechanical
properties of S6DGNKh alloy [9 — 12].

All processes based on the phenomenon of diffusion-
driven decomposition of a solid solution are governed
by the rate of this phase transformation. Proper alloy-
ing enables the acceleration of these processes without

50
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Cu 10 20
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Fig. 1. Isothermal section of phase diagram
of the Cu — Ni — Mn system at 450 °C [7]

Puc. 1. V3otepMmuueckuil pazpes 1uarpaMMbl COCTOSIHUS
cucrembl Cu — Ni — Mn nipu 450 °C [7]
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degrading the structural characteristics of the precipitated
particles. As calorimetric studies have shown [13], addi-
tional alloying of the Cu—Ni—Mn system with chromium
in an amount of 1.8 — 2.2 wt. % allows for the highest rate
of initial decomposition of the supersaturated solid solu-
tion and promotes the continuous decomposition mecha-
nism. During continuous decomposition, a large number
of MnNi particles exceeding 5 nm in size forms within
the grain at the initial stage of the process, effectively
preventing the growth of discontinuous decomposition
regions from the grain boundaries [14; 15]. It should
also be noted that regardless of the type of decomposi-
tion occurring, equilibrium is not fully reached even after
prolonged aging treatments of more than 100 h [13; 16].

The aim of this study is to determine the optimal aging
parameters for S6DGNKh alloy to maximize hardness
under conditions that promote the continuous decompo-
sition of its supersaturated solid solution.

[ EXPERIMENTAL METHODOLOGY

This study examined samples of 56DGNKh alloy,
whose chemical composition is presented in the Table.
The alloy was produced by induction melting in a protec-
tive atmosphere. The material was not subjected to homog-
enization annealing. Rods with a diameter of approxi-
mately 40 mm were obtained by hot forging of the ingot.

The samples used for testing measured approxi-
mately 5x5x7 mm. Their heat treatment was conducted
in two stages: quenching and aging, both performed in
vacuum inside an evacuated quartz ampoule. Quench-
ing was carried out from temperatures ranging from 700
to 800 °C, with a 30-min holding time under a vacuum
of approximately 102 mmHg. Cooling involved remo-
ving the ampoule from the furnace and allowing it to cool
without air admission. Under these conditions, the samp-
les cooled from the heating temperature to approximately
150 °C in 2.5 min, followed by further cooling in air.
The effect of quenching on the formation of a homoge-
neous solid solution was confirmed by the low hardness
of the samples and the microstructure, which corres-
ponded to a solid solution with approximately equiaxed
grains ranging from 25 to 45 pm, with some annealing
twins, this was also supported by X-ray phase analysis
results. The decomposition of the metastable supersatu-
rated solid solution was achieved through the thermal
aging process. Aging was performed in a muffle furnace
in air for 2, 7, 10, 12, and 25 h at temperatures ranging

Chemical composition of S6DGNKh alloy, wt. %

Xumnueckuii cocras ciiiapa S6AI'HX, mac. %

Cu Ni Mn Cr
55-57 20-22 20-22 | 1.8-22
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from 375 to 525 °C. After aging, the samples were cooled
in air. Three samples were tested for each aging mode.

Microhardness measurements and microstructural
analysis using metallographic methods were conducted
on sections located at least 1 mm from the sample sur-
face. The polished samples, prepared using standard
surface preparation techniques, were etched with aqua
regia [17] for 30 — 60 s. Microhardness (HV, in kgf/mm?)
was measured using a PMT-3 microhardness tester fol-
lowing the Vickers method under a 500 g load. Variations
in microhardness values between samples (up to 90 HV)
due to liquation heterogeneity significantly exceeded
the measurement error for an individual sample (maxi-
mum 11 HV). Therefore, the graphs present the average
microhardness values obtained for each sample, without
indicating the measurement spread.

The phase composition of the alloy was analyzed
by X-ray phase analysis using a DRON-3M diffractom-
eter with CoK | radiation.

[ RESEARCH RESULTS

The microhardness of the 56DGNKh alloy samp-
les after quenching is relatively low, measuring
HV 0.5 =100 — 130 kgf/mm?. The microstructure at this
stage does not contain any second-phase inclusions
(Fig. 2, a).

During aging, the change in microhardness follows
a multi-stage pattern: an initial increase at short aging
times is followed by a subsequent decrease with increa-
sing aging time, with a clearly defined maximum or a pla-
teau between these two stages of the graph.

Fig. 3 presents data on the microhardness values
obtained after different heat treatment modes.

Analysis of these dependencies reveals the following.

The maximum microhardness of 56DGNKh alloy
achieved through aging is HV 0.5 = 456 kgf/mm?, which
is 3.5 — 4.5 times higher than the initial value.

When quenching temperatures are in the range
of 700 — 750 °C, the microhardness attained after aging
is at its highest. Increasing the quenching temperature
to 800 °C leads to a reduction in maximum microhard-
ness (Fig. 3, a). Therefore, the optimal quenching tem-
perature should be considered 750 °C.

The maximum microhardness is observed at aging
temperatures of 475 — 500 °C for aging durations of 7
to 12 h. This temperature and time range should be used
for the aging process.

With varying aging times, the pattern of microhard-
ness changes remains the same for all aging temperatures,
but the degree of hardening achieved differs. The common
characteristic of these dependencies is that microhard-
ness increases with aging time up to a certain point, after
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Fig. 2. Microstructure of S6DGNKh alloy after quenching (a),
aging by intermittent decomposition at 525 °C for 2 h (b)
and aging by continuous decomposition at 475 °C for 10 h (¢)

Puc. 2. Muxkpoctpykrypa ciutaa S6/I'HX B coctostHuu mocie
3aKaJky (), CTapeHH s 10 MEXaHU3My HPEPBIBUCTOTO pacraia
rpu 525 °C B Tedyenue 2 4 (b) U cTapeHus 0 MEXaHU3MY
HenpepsIBHOTO pacnaza npu 475 °C B reuenue 10 4 (¢)

which it begins to decrease. The rate of decrease is higher
at higher aging temperatures. The aging time after which
microhardness starts to decline shortens as the aging tem-
perature increases (Fig. 3, b). The optimal aging mode
for achieving the maximum increase in microhardness in

400
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HV 0.5, ., kegfimm’
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HV 0.5, , kgf/mm’

200

t,h

Fig. 3. Dependence of microhardness of S6DGNKh alloy
on the quenching temperature (a) and aging duration
at temperatures °C:
1—475;2—-425; 3 —-475;4-500; 5 — 525, quenching from 750 °C (b)

Puc. 3. 3aBucuMocTb MUKpoTBepaocTH ciiasa S6AT'HX
OT TeMIIePATyPhl 3aKaJIKU (@) ¥ TPOAOKUTEIBHOCTH CTAPCHUS
IIpu Temneparype crapenus, °C:
1—475;2—-425;3—475;4—500; 5 — 525, 3akanka ot 750 °C (b)

56DGNKh alloy is heating to 475 °C with a 10 h hold-
ing time. Under these conditions, the microhardness
increases to HV 0.5 = 450 kgf/mm?.

Phase and structural analysis of 5S6DGNKh alloy in
different states revealed that after quenching, X-ray dif-
fraction (XRD) patterns show only lines corresponding
to a solid solution based on copper with an FCC lat-
tice. No effects of isomorphic regions in the matrix with
a similar lattice parameter are observed in diffraction
lines, even for reflections with large indices (e.g., (220))
(Fig. 4, a), confirming the homogeneity of the quenched
solid solution. For this solid solution state, a slight shift
in diffraction lines from the tabulated values characteris-
tic of pure copper is observed, which is caused by lattice
distortions due to the high concentration of nickel and
manganese in the solid solution.

The essence of the aging process is the formation
of MnNi compound particles, which leads to a decrease
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in the concentration of alloying elements (Mn, Ni, Cr) 1 a
in the solid solution. The early stages of this process
are not detected by X-ray diffraction analysis because
the amount of the precipitated hardening phase is still
low, and the lattice parameters of the copper-based solid
solution and the MnNi compound are very similar. How-
ever, this process can be observed metallographically: if
the phase transformation follows a discontinuous decom-
position mechanism, dark precipitate bands of the MnNi 200

second phase begin to form along the grain boundaries 220
of the a-solid solution present in the alloy after quenching
(Fig. 2, b). When a sufficient amount of the MnNi phase WJ
has precipitated, its formation is indicated by changes in N
the shape of diffraction lines [18] on X-ray diffraction pat- 45 50 55 60 65 70 75 80 85 90 95 100
terns (Fig. 4, b, ¢).

Intensity

220
) ) ) ) ) b
The absence of this effect in the first diffraction lines

with low indices is explained by the close lattice para-
meters of the tetragonal 0-phase and copper. The observed
shift of the primary (220) line from 26 = 87.5° (Fig. 4, a)
toward higher angles (almost 26 = 90°, Fig. 4, b) indi-
cates that the lattice parameter of the solid solution is
approaching the equilibrium lattice parameter values
characteristic of pure copper (tabulated 20 = 88°54").

Intensity

According to the general theory of supersaturated
solid solution decomposition, the two-stage nature
of hardness changes during aging can be explained
by the structural and crystallographic characteristics
of the alloy [10; 19; 20]: 84 8 8 8 8 89 90 91

— during the initial hardness increase, the amount
of precipitated MnNi phase is small, but the particles J
remain coherent with the matrix, leading to a gradual
hardness increase as their volume fraction grows;

— as the number of precipitated particles increases, they
begin to lose coherence with the matrix, but their increa-
sing volume fraction results in maximum hardening;

Intensity

— at later aging stages, as the particle size continues
to grow and coherence with the matrix is lost, their harde-
ning effect diminishes due to an increased interparticle
distance, despite their continuing increase in volume
fraction.

With increasing aging temperature, the described . . . . . .
sequence of transformations exhibits a wave-like pat- 84 85 86 87 88 89 90 91
tern. At higher aging temperatures, MnNi intermetallic

. .. . . 20, de
particles precipitate rapidly and quickly lose coherence &
with the matrix. As a result, the maximum microhard- Fig. 4. X-ray diffraction pattern of 56DGNKh alloy
ness is reached sooner, but the overall hardening effect after quenching from 800 °C for 30 min (a);

the third diffraction maximum of this pattern, corresponding
to the <220> line of the copper lattice (b) and the same line
for the alloy after quenching and aging at 475 °C for 25 h (¢)

is lower. At lower aging temperatures, the precipitation
process occurs more slowly, and the number of MnNi
particles increases at a slower rate. The loss of coherence
also progresses gradually, shifting the hardness peak Puc. 4. Pentrenorpamma crasa 56 JTHX nocne saxanku ¢ 800 °C
to longer aging times while allowing for a higher overall B Tezerme 30 upH (); TpeTHi ANGPAKIHOHHEI MAKCHMYM

¢ theni ffect. Based on this analvsis. th timal pentrenorpammsl crasa S6II'HX mocne 3akanku ot 800 °C
S rf:ng enll_‘lg cltect. sed © S . ysis, the op ¢ BBIIEPKKOH B Teuenue 30 MUH, COOTBETCTBYIOIMH TuHuH (220)
aging conditions are those that provide the longest pos- petetku Meu (b); Ta ke JTMHUS U1 CILIaBa I0CIe 3aKajlKku

sible coexistence of coherent copper-based a-solid solu- u crapenus pu 475 °C B Tedenne 25 4 (c)
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tion regions and MnNi hardening phase particles. This is
achieved at aging temperatures of 475 — 500 °C.

- CONCLUSIONS

In the quenched state, the microhardness of S6DGNKh
alloy ranges from 100 to 130 kgf/mm?, which is charac-
teristic of a homogeneous copper-based solid solution.

As the aging temperature increases from 375 to 475 °C,
the microhardness exhibits a monotonic increase from
HV 0.5 =156 — 190 kgf/mm? to HV 0.5 = 440 — 456 kgf/
mm?, with higher temperatures leading to a faster attain-
ment of peak hardness; however, the ultimate hardness
value depends on the specific aging temperature.

At 500-525°C, a sharp drop in maximum
attainable microhardness is observed, reducing it
to HV 0.5 =250 - 290 kgf/mm?, indicating overaging
of the alloy. The microhardness dependence on aging time
follows a curve with a distinct peak across all quenching
and aging temperatures.

The optimal two-stage heat treatment for this
alloy consists of quenching, which involves heating
to 750 °C, holding for 30 min, and cooling at a rate
of no less than 300 °C/min, followed by aging by rehea-
ting to 475 °C, holding for 10 h, and subsequent cool-
ing in air. After this treatment, the microhardness reaches
HV 0.5 = 450 kgf/mm?.
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