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Abstract. The desire of modern manufacturers to reduce the cost of producing goods leads to an increased search for ways to obtain the raw mate-
rials for future products more efficiently. One promising method for obtaining raw materials is electric arc surfacing (WAAM), which is discussed
in this paper. The aim of the study was to investigate the effect of electric arc surfacing on the structure and fatigue strength of 30CrMnSi steel.
To obtain the samples, two walls were surfaced according to the specified modes: /=150 A, U=25V, Q=600 J/mm (mode /) and /=110 A,
U=17V, Q=300 J/mm (mode 2). During the study of the walls microstructure after milling, it was found that when the metal is surfaced according
to the mode /, large accumulations of technological defects such as pores and bad welding form in the material. When the metal is treated according
to the mode 2, these macroscopic defects are practically not detected. During optical emission analysis, it was observed that during the surfacing
process, alloying elements are consumed and the carbon content decreases most actively. It should be noted that the burnout of elements occurs more
actively when the metal is surfaced using the mode /. This may be due to the higher energy input in this process. A predominant ferrite-sorbite structure
was found in the metal surfaced using the mode /. However, local ferritic colonies were revealed on the surface of the samples due to their height.
The microstructure of the samples produced using the mode 2 is mainly composed of ferrite and pearlite. Ferrite is isolated as closed grids along
the boundaries of the austenitic grains, and traces of a Widmanstetten structure can also be seen. Perlite is present both as highly dispersed plates and
partially spheroidized colonies. Despite the fact that the structure of the samples produced using the mode / is generally considered to be more favo-
rable in terms of material properties, the fatigue strength of the samples produced according to the mode 2 exceeds that of the mode / by an average
of 70 %. This may be due to the stronger influence of technological defects on the metal fatigue resistance than microstructural ones.
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AnHomayus. CoBpeMEHHOE IIPOU3BOACTBO AKTHBHO 3aHUMAETCS IOMCKOM BOSMOXHOCTCH ITOTydYEHHUs 3aTOTOBOK H3/ICIHIl HanOoiee 3KOHOMUIECCKI
BBITOJIHBIMU cIIoco0amMu. OIHUM 13 IePCIIEKTHBHBIX METOIOB MOIYUECHHS 3ar0TOBOK SABJISIETCS 2JIeKTpoyroBas HarulaBka (WAAM), npumeHsemas
B JaHHOM pabote. Llenbro HccaenoBaHus SABIUIOCH H3yUCHHE BIUSHHIE PEXKUMa EKTPOAYTOBON HAILIABKU Ha CTPYKTYPY H yCTAIOCTHYIO IPOY-
HocTh 00pasioB u3 cranmu 30XT'CA. J{ns nmomydeHust 00pa3ioB ObUTH HAIUIABICHBI JBE CTCHKH IO CIeAyMmuM pexumam: /=150 A, U=25 B,
0 =600 JIx/mm (pesxum /) u [=110 A, U= 17 B, O =300 /MM (pexnm 2). B Xone u3ydeHHs MAKpOCTPYKTYPHI HAILTABICHHBIX CTEHOK II0CIIC
(pe3epoBKH yCTaHOBJIEHO, YTO IPH HAIUIABKE 110 PeKUMY / B MeTalie 00pa3yloTcs O0NbIINe CKOMICHUs TEXHOIOTHYECKHX 1e()EeKTOB, TAKUX, KaK
HOPHI ¥ HeTIpoBapsl. [1pu HamaBke MeTala 1o pexkuMy 2 Makpoae(eKThl IPaKTHICCKU He BRIABILIOTCS. ONTHKO-3MHUCCHOHHBII aHAIN3 II0KA3aJL,
YTO B IPOIIECCE HAIUIABKH MPOMCXOAUT BBIFOPAHUE JIETHPYIONIIMX 3JIEMEHTOB, Hanbolee aKTUBHO CHIDKAeTCs colep:kaHue yriaepona. Cuemyer
OTMETHTb, 4TO yrap 3JIEMEHTOB IIPOUCXOJUT O0JIce aKTHBHO IIPH HAILIABKE METaJIIa O PEKUMY /, 9TO MOKET OBITH CBSA3aHO ¢ OOJbIICH HOTOHHON
SHeprueil mporuecca. B Meraule, HalIaBIeHHOM 10 JJAHHOMY PEXUMY, BBISABICHA IPEUMYIIECTBEHHO (heppUTHO-COPOUTHAS CTPYKTYpPa, OJHAKO
0 BBICOTE O0OpPA3IIOB BBIABIIAIOTCS JIOKAIbHBIE (hepPUTHBIC KOJTOHHU. MUKpPOCTPYKTypa 00pa3LoB, H3TOTOBICHHBIX [0 PEXUMY 2, IPEHMYIIECT-
BEHHO NpejicTaBieHa heppuToM U nepiautoM. Gepput BeIIEISETCS B BUAE 3aMKHYTBIX CETOK 110 TPAHHUIAM OBIBIIErO ayCTEHHTHOTO 3epHa, TaKKe
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BBISIBJICHA BHMAHIITETTOBA CTPYKTypa. B MUKPOCTPYKTYpe NEepIuT MPEeCTaBICH KK B MJIACTUHYATON, TaK M B YACTHYHO CHEePOUAN3UPOBAHHON
dopme. CtpykTypa 00pa3sLoB, HAITABICHHBIX 10 PEXXUMY /, cauTaeTcs 6osee OaronpuaTHOH. OJHAKO yCTAIOCTHAs IPOYHOCTH 00Pa3LOB, H3r0-
TOBJICHHBIX 0 PEXHUMY 2, NMPEBBILIACT COOTBETCTBYIOIINE 3HAUCHUs Julsi pexknuma / B cpenHeM Ha 70 %. 1o Moxer ObITh 00ycioBieHo Oonee
CHJIBHBIM BJIMSIHHEM Ha CONMPOTHBIICHHE yCTAIOCTH META/LIa TEXHOIOTHIECKHUX e(DEKTOB, 4eM MHKPOCTPYKTYPHBIX.

Kniouesvwle caoea: crans 30XI'CA, ycranocTHas HPOYHOCTb, A€PEKThI CTPYKTYPBI, aJJUTUBHBIE TeXHOTOrHH, WAAM
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B INTRODUCTION

Modern manufacturing is increasingly focused on
reducing production costs. In this context, additive manu-
facturing methods are gaining widespread adoption due
to their unique technological capabilities for producing
complex-shaped preforms from a wide range of mate-
rials [1 —3].

The main additive manufacturing methods currently
known are selective laser melting (SLM) [4; 5], laser
powder deposition (e.g., LENS/DMD) [6; 7], and wire arc
additive manufacturing (WAAM) [8; 9]. Among these,
WAAM is considered the most productive and techno-
logically straightforward method [8; 10; 11].

Despite the significant advantages of additive manu-
facturing methods over traditional approaches, the pro-
cesses occurring in the metal during surfacing (primarily
structure formation) remain insufficiently studied. Litera-
ture [12; 13] indicates substantial differences in the micro-
structure and, consequently, the properties of metals
in surfaced preforms compared to materials produced
by traditional methods. These non-standard microstruc-
tures result from crystallization under non-equilibrium
conditions during layer surfacing and the high number
of high-temperature thermal cycles involved in surfacing.
The main challenges in using WAAM for producing pre-
forms include:

— selecting surfacing parameters considering the burn-
out of alloying elements;

—ensuring structural uniformity along the height
of the surfaced metal;

— determining the optimal heat treatment (HT) mode
that accounts for the altered chemical composition
of the material after surfacing [14 — 16].

At the same time, achieving the desired combination
of properties in products without additional heat treat-
ment of preforms can significantly reduce production
costs.

30CrMnSi steel is widely used in the manufacture
of components operating at temperatures up to 200 °C.
Products made from this steel (such as shafts, axles,

levers, push rods, etc.) often work under alternating loads,
which can lead to fatigue failure of structures. Achieving
a sufficient level of fatigue strength without heat treat-
ment (tempering) in this material is a promising goal for
domestic industry.

Thus, the aim of this study is to investigate the effect
of electric arc surfacing mode on the structure and fatigue
strength of 30CrMnSi steel.

[l MATERIALS AND METHODS

The samples used in the study were surfaced as walls
on an experimental WAAM test bench, which included
a three-axis CNC gantry machine (IVCNC STL),
an Alloy 275 ME Pulse welding power source, an exhaust
hood, a welding table, and a welding torch. The 3D prin-
ting method used on this test bench is protected by patent
RU 2696121C1. NP-30CrMnSi welding wire was used
for surfacing the samples, with two walls surfaced as
part of the sample preparation. The surfacing mode was
defined by the following parameters: current (/, A), vol-
tage (U, V), arc gap (z, mm), wire feed speed (¥, mm/s),
and shielding gas flow rate. The arc gap and wire feed
speed were kept constant for all experiments at 11 mm
and 300 mm/min, respectively. The shielding gas flow
rate was also held constant.

The linear energy (Q) of the process (electrical
energy per unit length of the weld) was determined based
on the 3D printing modes as one of the key comprehen-
sive parameters, calculated according to the formula pro-
vided in GOST R ISO 857-1-2009, considering an energy
loss coefficient of 0.8:

=" (1)

Table 1 presents the surfacing modes for each surfaced
wall and the corresponding values of the linear energy
of the surfacing process.

Metallographic studies were conducted on transverse
cross-sections relative to the surfacing direction at mag-
nifications of 100x and 500x using an Altami MET1C
optical microscope. Preparation of metallographic sec-
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Table 1. Surfacing modes

Tabauya 1. Pe:xuMbI HATLIABKH

Mode I, A U,V 0, J/mm
1 150 25 600
2 110 17 300

tions followed a standard procedure involving mechani-
cal grinding with abrasive paper of various grit sizes and
polishing with paste. A 5 % alcoholic solution of nitric
acid (nital) was used as the etchant for chemical etch-
ing [17].

Fatigue test samples were cut from the preforms
along the surfacing direction. Fatigue tests were con-
ducted using a cantilever bending scheme in accordance
with the requirements of GOST 25.502-79. The sample
had a thickness of 3 mm and a working zone size
of 60x15 mm (Type IV according to GOST 25.502),
tested at a frequency of 8.3 Hz.

The chemical composition of the surfaced metal
was determined using optical emission spectrometry on
a Foundry-Master spectrometer.

- RESULTS

The results of the chemical analysis of the surfaced
metal and the composition of the initial wire are pre-
sented in Table 2.

As shown in Table 2, the surfacing process results in
a reduction in the content of alloying elements, which
is attributed to burnout, a phenomenon characteristic
of casting and welding processes. The most significant
reduction is observed in carbon content. It should be
noted that the burnout of elements is more pronounced in
samples surfaced using mode 7/, which may be associated
with the higher linear energy of the process.

The microstructures of 30CrMnSi steel samples sur-
faced using both modes are shown in Fig. 1. The micro-
structure of the sample surfaced using mode / is repre-
sented by ferrite and troosto-sorbite, which may indicate
quenching and tempering processes occurring during
the surfacing of subsequent metal layers. This structure
is favorable and, when considered layer by layer, uniform

Fig. 1. Microstructure of 30CrMgSi steel samples:
mode / (a); mode 2 (b)

Puc. 1. Muxpoctpykrypa o0pasios u3 craau 30XIT'CA:
pexum / (a); pexum 2 (b)

within a single layer. However, structural heterogeneity
is observed across the height of the sample, with distinct
areas containing large ferritic colonies (Fig. 2).

In the metal surfaced using mode 2, an anomalous
ferrite-pearlite structure was observed. Due to significant
overheating during surfacing and accelerated cooling,
ferrite is distributed as closed networks along the boun-
daries of former austenitic grains, forming a Widman-
stitten structure. Determining the morphology of pear-
lite at a magnification of 100x is challenging. At higher
magnifications, the microstructure of the sample surfaced

Table 2. Chemical composition of the surfaced metal and the initial wire

Tabauya 2. XMMUYeCKHii COCTAB HANJIABJICHHOTO MeTaJIJ1a M MCXOHOI MPOBOJIOKH

Sample name © Si Mn Cr Ni S P
Initial wire (30CrMnSi steel) | 0.291 | 1.021 | 0.931 | 0.961 | 0.099 | 0.021 | 0.016
Surfaced metal (mode /) 0.260 | 0.941 | 0.901 | 0.942 | 0.096 | 0.013 | 0.018
Surfaced metal (mode 2) 0.281 | 0.982 | 0.916 | 0.950 | 0.098 | 0.017 | 0.017
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Fig. 2. Microstructure of the sample surfaced according to the mode /

Puc. 2. MuxpocTpyKTypa 00pasiia, HallIaBIeHHOTO M0 PeXUMY [

using mode 2 (Fig. 3) clearly reveals the Widmanstitten
structure. Additionally, pearlite is observed in the form
of highly dispersed plates and partially spheroidized
colonies.

An analysis of the microstructures of samples sur-
faced under different modes (Figs. 1 —3) showed that
mode / leads to more active recrystallization of the struc-
ture in previously surfaced layers. This is attributed
to the greater amount of thermal energy delivered
to the material. Despite the more favorable structure

Fig. 4. Macrostructure of milled walls:
mode / (a); mode 2 (b)

Puc. 4. MakpoctpykTypa (ppe3epoBaHHBIX CTEHOK:
pexum / (a); pexum 2 (b)

Fig. 3. Microstructure of the sample surfaced according to the mode 2

Puc. 3. MukpocTpyKTypa 00pa3sia, HalUIaBICHHOTO 10 PeKUMY 2

achieved during surfacing, structural heterogeneity along
the height of the sample is observed, which may lead
to a reduction in the mechanical properties of the metal.
Additionally, there is an increased risk of metal spatte-
ring, elevated porosity, and other technological defects
during surfacing using mode /, which can further degrade
the overall properties of the material.

Technological macrodefects are clearly visible on
the surfaced walls after milling (Fig. 4). In the preform
surfaced using mode /, significant clusters of macro-
defects, including pores and lack of fusion [18; 19],
are evident. These defect clusters evidently contrib-
ute to a reduction in the overall mechanical properties
of the material [20; 21]. In contrast, macrodefects are
almost entirely absent in preforms surfaced using mode 2.

The data obtained from fatigue strength tests of samp-
les surfaced under different modes are presented in Fig. 5.

Although the structure of the samples surfaced using
mode / is considered more favorable in terms of mate-
rial properties, the fatigue strength of the samples pro-

530
510
490
470
450
430
410
390
370

350 1 1 1 1
0 5,000 10,000 15,000 20,000

o, MPa

25,000
N, cycles

Fig. 5. Graph of low-cycle fatigue of the samples:
1 —mode /; 2—mode 2

Puc. 5. I'paduk MaionMKIOBOH yCTalI0CTH 00pa3LoB:
1 —pexum /; 2 — pexum 2
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duced using mode 2 exceeds the corresponding values for
mode / by an average of 70 % (Fig. 5). This effect may
be attributed to the presence of macropores, bad welding,
and other technological defects in the metal (mode 7).
Based on the data in Fig. 5, it can be concluded that tech-
nological defects have a greater impact on the fatigue
strength of the metal than microstructural imperfections.

[ ConcLusions

The study revealed that the surfacing mode signifi-
cantly influences not only the metal’s structure forma-
tion but also the presence of technological macrode-
fects (such as pores, incomplete fusion, lack of bonding,
etc.). Although the structure of the metal surfaced using
mode / is more favorable for the mechanical properties
of the final product, the accumulation of macrodefects
leads to a reduction in the overall property set of the pre-
form.

Microstructural analysis showed that the structure
of the metal surfaced using mode / (/=150A, U=25,
0 =600 J/mm) is predominantly composed of ferrite
and sorbite. However, localized ferritic colonies are
observed along the height of the sample. The structure
of samples surfaced using mode 2 (/=110A, U=17Y,
0O =300 J/mm) exhibited an anomalous ferrite-pearlite
structure formed as a result of significant overheating
during surfacing and rapid cooling. In this case, ferrite
is distributed as closed networks along the boundaries
of the former austenitic grains, and a Widmanstitten
structure is also observed. Pearlite is present as highly
dispersed plates and partially spheroidized colonies.

The fatigue strength of samples produced using
mode 2 is, on average, 70 % higher than that of mode /.
This difference is primarily attributed to the greater
impact of technological defects (such as pores, incomp-
lete fusion, and bad welding) on the metal’s fatigue
strength compared to microstructural imperfections.
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