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Аннотация. Взаимосвязь температурно-деформационно-силовых параметров в процессах горячей деформации имеет важное значение 

в практике обработки давлением. Из двух вариантов поиска и описания таких связей (основанных на физических закономер ностях 
и математических приемах) в некоторых случаях оказывается более простым способ математического поиска искомой зависимости. 
Именно такой путь реализован в данной работе. Для этого из оцифрованных диаграмм деформации образцов жаропрочной 12 %-ной 
хромистой стали 1Cr12Ni3Mo2VNbN, продеформированных до истинной степени деформации ~1 при 1253 – 1453 К и скорости 
сжатия 0,01 – 10 с–1 в истинных координатах (φ и S) создавали матрицу исходных данных, в которой для каждой точки эксперимен-
тальной диаграммы деформации указывались напряжение S, степень деформации φ, скорость деформации φ′ и температура Т. 
Проведен поиск математической модели в мультипликативной форме, что позволило логарифмированием привести ее к линейному 
виду, а для поиска коэффициентов при сомножителях (а после логарифмирования – при слагаемых) использовать стандартные опера-
торы программы Mathcad, использующие алгоритмы расчетов на основе метода наименьших квадратов. Качество модели оценивали 
количественно через расчет Q – суммы квадратов разностей между расчетными и экспериментальными значениями напряжений 
с нормировкой ее на среднее значение напряжения S от всего массива. Для найденной наилучшей формы связи S = f (φ, φ′, T) вида  
 

 значение Q  
 

  myubelom@yandex.ru
Abstract. The relationship between temperature-strain-force parameters in hot deformation processes is important in the forming prac-

tice. Of the two options for searching and describing such relationships (based on physical laws and mathematical techniques), in some 
cases the method of mathe matical search for the desired dependence turns out to be simpler. This is exactly the path implemented in the 
abstracted message. For this propose, a matrix of initial data was created from digitized strain diagrams of the samples made of heat-resistant 
1Cr12Ni3Mo2VNbN 12 % Cr steel deformed to a true deformation degree of ~1 at 1253 – 1453 K and a compression rate of 0.01 – 10 s–1 
in true coordinates (φ and S). In this matrix, for each point of the experimental deformation diagram the stress S, the deformation degree 
φ, the deformation rate φ′, and the temperature T were indicated. The required mathematical model has a multiplicative form, which made 
it possible to bring it into a linear form by taking logarithms and to search for coefficients with the factors (and after logarithm, with 
terms in a polynomial) to use standard Mathcad operators with calculation algorithms based on the least squares method. The quality of 
the model was assessed quantitatively by calculating Q – the sum of squared differences between the calculated and experimental stress 
values   with its normalization to the average stress value S from the entire array. For the found best form of relationship S = f  (φ, φ′, T) as  

 the Q value  
 

was 6 % of Sav = 130 MPa. It was established that the found type of mathematical description of hot deformation is applicable to the analysis of hot 
deformation processes of a wide variety of metal materials, while the accuracy of the predictive characteristics of the deformation stress is 3 – 11 %. 
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 Introduction

Pressure processing is the primary method for 
obtaining metal products of a specified grade and size. 
From the perspective of production efficiency (balance 
of equipment and billet heating costs), hot deformation 
has an undeniable advantage. Cold deformation is used 
to impart high mechanical properties at the final stage 
of pressure processing through the mechanism of cold 
work hardening (sheet, wire, strip, rod, etc.).

The ability to control hot deformation processes is 
determined by knowledge of the relationships between 
such variable factors as pressure, deformation, strain rate, 
and temperature. Understanding these patterns allows for 
the introduction of computer control over hot deformation 
processes (such as controlled rolling for automobile body 
sheet) to regulate the structure and mechanical properties 
of the final product.

Basic equations relating variables of the Hollomon 
type (H) [1; 2], exponential-power law (ES) [3], Lud-
wigson (L) [4], Zener-Hollomon (Z and Z1) [5; 6], Bird–
Mukherjee–Dorn (BMD) [7], the modified Zener-Hollo-
mon equation (ZM) [5], and Johnson-Cook (DK) [8] are 
known. These equations mathematically appear as fol-
lows:

               S = S0 φn ; (H) 

          σ = Aεn
 exp(kε); (ES)

              S = K0 φn + exp(K1 + K2φ); (L)

    (DK)

          (Z)

    (Z1)

where S is the true stress, MPa; S0 , K0 , K1 , K2 , A, α, n are 
material constants, α = β/n; φ is the true strain, dimension-
less; σ is the flow stress, MPa; ε is strain, dimensionless; 
Z is the Zener-Hollomon parameter;  is the strain rate, s–1; 
Q is the activation energy of hot deformation, kJ/mol; R is 

the universal gas constant, 8.314 J/mol·K; Т is the abso-
lute temperature, K; F(σ) = σθ, ασ < 0.8; F(σ) = exp(βσ), 
ασ > 1.2; F(σ) = [sin h (ασ)]n for all other ασ.

The replacement of the hyperbolic law F(σ) in equa-
tion (Z1) gives

            (А)

where p is a constant. 
Equation (A) – the Arrhenius equation in the form 

of the hyperbolic sine [9; 10] – can better describe 
the dependence of stress on temperature and strain rate 
during steady-state flow. According to the definition 
of the hyperbolic law, the flow stress can be expressed as 
a function of the Zener-Hollomon parameter in the form:

       (Z)

           (BMD)

   (ZM)

The above equations are not universal. The Hollo-
mon-type equation (H) is used to determine the parame-
ters of the cold and warm deformation curve, where, 
until the point of plastic flow instability (most often 
until the onset of necking), the strain hardening coeffi-
cient dσ/δε is positive (i.e., the curve continuously rises, 
although with a constantly decreasing slope). The expo-
nential-power equation (ES) describes well the hot defor-
mation curve, where there is a stage with a constantly 
decreasing load (although quite slowly) as deformation 
increases, not associated with the onset of necking (at this 
stage, processes are controlled by dynamic polygoniza-
tion), but it poorly describes the stage of dynamic 
recrystallization. The first two types of equations do not 
account for temperature and strain rate. The Zener-
Hollomon (ZM) equations and their variants are used 
to describe those hot deformation curves where the stage 
with a constant strain rate is pronounced (at this stage, 
the curve runs parallel to the abscissa axis, which may be 

составило 6 % от Sср = 130 МПа. Установлено, что найденный вид математического описания горячей деформации применим к анализу 
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due to dynamic polygonization or dynamic recrystalliza-
tion), and the found equations allow predicting the rela-
tionship between strain rate at this stationary stage with 
temperature and stress, but without considering the degree 
of deformation. 

The number of generalized mathematical dependen-
cies (i.e., considering all four factors – strain ε, strain rate 
, temperature Т, and stress σ) hat various researchers 

aim to derive from experimental results is limited. These 
include the general Arrhenius-type dependencies 

 

the Zerilli-Armstrong dependency 

σ = C0 + C2 ε1/2 exp[–C3T + C4 ln( )], 

and the combined equation 

 

where С0 , С2 , С3 , С4 are constants.
The relationship between all four variables (σ, ε, , Т)  

can be represented by generalized model equations 
(GM) [1; 11] 

       (1.1)

or after logarithmization 

      (1.1а)

Combining equations (ES – exponential-power law) 
and (GM – generalized model) [12] gives

 

or after logarithmization

The generalized Zerilli-Armstrong equation [13] is 
also known 

σ = С0 + С2 ε1/2 exp[(–C3 T + C4 ln( )],

after logarithmization of which (assuming С0 = 0 
at the initial cycle), the relationship between variables 
can be expressed as a functional dependence in the form

log(σ) = A + B log(ε) + C log( ) + DT.

All these equations are used both to describe deforma-
tion processes and to predict (calculate) the parameters 
required by engineers or researchers – stress, strain, or 
strain rates.

Some researchers introduce structural parameters 
(grain size, dislocation density, etc.) into deformation 
models. Such models include the Bird–Mukherjee–
Dorn (BMD) and Johnson-Cook (DK) models [7; 8]. 
However, the application of such methods requires pre-
liminary determination of a large number of structural 
parameters for each deformation curve (up to three), so 
the total number of determined variables can amount 
to several dozen.

The experimental part of hot deformation research 
is conducted on small-sized test samples. The parame-
ters of hot pressure processing are simulated by vary-
ing temperature, strain rate, and deformation degree 
while recording the load on the sample. The purpose 
of such tests is to obtain a set of deformation curves 
constructed in the coordinates “strain ε – stress σ” while 
varying the test temperature Т and the nominal strain 
rate , which are kept constant in a single experiment, 
and then to find a formula that links all the variables 
(both dependent and independent). This is the proce-
dure for constructing a generalized mathematical model 
of hot deformation. For an adequate comparison of the 
mechani cal behavior of samples in such tests with 
the evolution of the structure, the experiments are con-
ducted in a manner that maintains a constant true strain 
rate φ′ throughout the entire test, and the recorded force 
on the sample is converted into true stress S. When using 
“true coordinates” S and φ, the change in the dimensions 
of the samples during deformation is taken into account 
(when using “nominal coordinates” σ and ε, all the calcu-
lated mechanical characteristics are related to the initial 
dimensions of the samples). 

Analysis of mathematical methods used to obtain 
coefficients for various dependencies leads to the conclu-
sion that the simplest ones are the “one-step” methods, 
which, through logarithmization or other mathematical 
transformations, reduce the original model (chosen as 
a hypothesis to test its quality) to a linear form. After 
this, determining the coefficients of such a model 
becomes trivial (the procedure for finding the coefficients 
of linear equations in typical calculation programs such 
as Excel, Mathcad, Origin, MATLAB, Statistica, and 
the like is extremely simple and formalized). In con-
trast, the procedure for determining the coefficients for 
variables in the Z1 deformation law, which is most often 
used by researchers, is multistep, with several interme-
diate stages of analysis. The authors of [14; 15], based 
on the ideology of simplifying the search for a deforma-
tion law, developed a method for analyzing the creep 
process, in which the number of experimental variables 
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was limited to three (stress, temperature, and strain rate). 
The analysis, carried out using such a simplified model, 
showed that the first step in such a process should be 
the experimental or theoretical (or hypothesized) search 
for the form of the model that is convenient for mathe-
matical transformations. For the case of creep analysis, 
the following was demonstrated:

– two main methods used in practice – Hollomon’s 
method (or its special case, the Larson-Miller method) 
and the Arrhenius approximation – allowed models 
to be obtained with similar predictive accuracy;

– in the factors of both models, which account for 
the influence of deformation temperature, it is advi sable 
to also consider the level of applied stresses (which, 
according to creep test methodology, are always initial);

– accounting for the previous point inevitably leads 
to the appearance of a “cross” influence of independent 
factors in the generalized deformation equation (such as 
“stress σ(1/Т)”).

These results led to the idea of applying the same 
procedures to find the generalized mathematical law 
of hot deformation, in which the fourth variable – degree 
of deformation – inevitably appears.

The aim of this work is to develop a generalized 
mathematical equation to describe large hot plastic 
deformations, taking into account the simultaneous 
influence of strain φ, strain rate φ′, and temperature Т, 

without relying on the structural-mechanical constants 
of the material.

 Description of the analysis object and
 

the processing methodology

All researchers conducting multifactor analysis 
of hot deformation use the results of compression tests 
on cylindrical samples with a diameter of about 10 mm 
and a height-to-diameter ratio of ~1 to 2. In this study, 
the analysis was carried out using the results described 
in [12]. Yang-Hong Xiao and Cheng Guo, in their report, 
presented data from compression tests up to true strain 
values of ~1 at 1253 – 1453 K and compression rates 
of 0.01 – 10 s–1 on samples of heat-resistant 12 % chro-
mium steel 1Cr12Ni3Mo2VNbN. The shape of the initial 
deformation curves is shown in Fig. 1.

By digitizing these curves using the Grafula program, 
an array of experimental data was obtained in the form 
of a table containing approximately 800 rows. In four 
columns, the table recorded data on deformation, stress, 
strain rate, and temperature for each experimental point 
(approximately 40 points for each of the 20 experimental 
curves). The independent variables were true strain φ′, 
and temperature Т (in K). The dependent variable was 
true stress S. A fragment of the initial data table is shown 
in Table.

Fig. 1. Curves of hot compressive deformation in true coordinates according to [12] at deformation rate, s–1 : 
0.001 (а); 0.1 (b); 1 (c); 10 (d) and temperature, K: 1 – 1253; 2 – 1303; 3 – 1353; 4 – 1403; 5 – 1453

Рис. 1. Кривые горячей деформации сжатием в истинных координатах по данным работы [12] при скорости деформации, с–1 : 
0,001 (а); 0,1 (b); 1 (c); 10 (d) и температуре, К: 1 – 1253; 2 – 1303; 3 – 1353; 4 – 1403; 5 – 1453
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 Results and discussion

Taking into account the results of studiesde-
scribed above, the first step was to base the analysis 
on the gene ralized Arrhenius-type dependency (GM). 
Using the regress function from the Mathcad program, 
the values of the coefficients A, B, C, D were obtained 
in equation (1.1а). After reversing the logarithmic form 
of equation (1.1а) to the direct form (1.1b) the following 
equation was derived 

J/mol      (1.1b)

A visual assessment of the model’s quality was con-
ducted by comparing the experimental values of S with 
the values calculated using the derived equation (1.1b) 
(Fig. 2). 

To quantitatively assess the quality of the mathe-
matical model, the sum of squared differences between 
the calculated and experimental stress values was 
compu ted, normalized to the mean stress value S using 
the formula

              (2)

For the model in the form (1.1b), this value was 
approximately 14 %. 

The comparison of the visual and quantitative assess-
ments shows that, despite the small average deviation 
of the predicted values from the experimental ones, 
the model (1.1b) provides poor predictions for high-stress 
intervals (the final sections of the compression curves 
with large degrees of deformation) (Fig. 2).

In order to refine the assumed model, an analysis 
of individual deformation curves was conducted. Since 
the primary mathematical method for determining coef-
ficients for the variables was linear regression analysis 
using the least squares method, the focus of the analy-
sis was on linear equations with a logarithmic form 
of the variables. Preliminary trials (where “trial” refers 
to various mathematical formulations of the relationships 
between the variables) for determining equations that 
describe individual deformation curves (each of these 
curves was obtained at constant values of temperature 
and strain rate) showed that for most deformation curves, 
the equation of the form

        S = А(φ)B10C(φ) (3)

or, after logarithmization 

          log(S) = A1 + B1 log(φ) + C1 (φ) (3a)

provides a good description. This representation allows 
obtaining Q values for individual curves in the range 
of 1.5 to 5 % (Fig. 3).

The accuracy of the prediction improves even fur-
ther when the expression (3a) is modified by including 
a multi plier in the form of the ratio of the strain degree φ 
to the logarithm of this value:

         (4)

The quality of such equations, evaluated by the para-
meter Q ranges from 0.5 to 1.7 % (Fig. 3), and the rela-

Fragment of initial data array for analysis 
of 1Cr12Ni3Mo2VNbN steel hot deformation

Фрагмент массива исходных данных для анализа 
горячей деформации стали 1Cr12Ni3Mo2VNbN

Number S, MPa φ, fraction of 1 φ′, s–1 Т, K
1 79.5 0.08876 0.010 1453
2 97.7 0.02500 0.010 1453
3 106.8 0.03700 0.010 1453
4 114.3 0.05100 0.010 1453
5 117.8 0.06700 0.010 1453
6 121.9 0.08000 0.010 1453
7 124.2 0.09400 0.010 1453
... ... ... ... ...

889 120.3 0.61200 10 1253

Fig. 2. Comparison of calculated and experimental stress values   
according to the model (GM) 

Рис. 2. Сопоставление расчетных и экспериментальных значений 
напряжений по модели (ОВ)
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tionship between variables in its direct form (without 
logarithms) is described by the equation

        (4а)

Further development of this model followed the next 
steps. In the deformation curves obtained from tests con-
ducted at low temperatures and/or high strain rates, there 
is an extended section of significant stress increase after 
the yield point on the graphs, with a high strain harde-
ning coefficient D = dS/dφ. Such a feature of the curve 
shape can be accounted for by introducing a third-degree 
polynomial of strain φ. Based on this logic, quadratic 
and cubic terms of the strain degree φ were added to the 
model in its logarithmic form: 

 (4c)

In its direct form, this expression is described by the 
equation 

        (4d)

With this representation, the parameter Q for indivi-
dual curves decreases from 0.3 to 1.0 %.

Taking all of the above into account, a modified mathe-
matical model was developed to describe the comp lete 
dataset. The modifications to the model (1.1) in its loga-
rithmic form (1.1a) were as follows: 

– terms accounting for the degree of deformation φ 
and the strain rate φ′ were introduced (under the exponen-

tial sign) into the multiplier that accounts for the effect 
of deformation temperature; 

– the mutual influence of independent factors on each 
other was accounted for by adding a multiplier (φφ′); 

– dependencies on the square and cube of the strain 
degree φ were introduced through corresponding multipliers. 

The general form of the equation for the relationship 
between variables, after being reduced to a linear form 
by logarithmization, looks as follows:

  (5)

Finding the coefficients A – P for equation (5), which 
ensures the minimum sum of squared differences between 
the calculated Scalc and experimental Sexp values, con-
ducted using the Mathcad program, made it possible 
to obtain the desired equation for the relationship in 
the following form

    (6) 

Fig. 3. Description of S – φ dependences with formula (3):
,  – experiment, dashed lines – calculated values; 

1 – T = 1253 K, φ′ = 0.1 s–1; 2 – T = 1453 K, φ′ = 0.1 s–1

Рис. 3. Описание зависимостей S – φ формулой (3): 
,  – эксперимент, штриховые линии – расчетные значения; 

1 – Т = 1253 К, φ′ = 0,1 с–1; 2 – Т = 1453 К, φ′ = 0,1 с–1

Fig. 4. Comparison of calculated and experimental stress values   
according to model (6a) 

Рис. 4. Сопоставление расчетных и экспериментальных значений 
напряжений по модели (6а)
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which can be transformed into its direct form:

  (6а) 

or with the temperature component separated:

  (6b)

A graphical illustration of the agreement between 
the calculated and experimental values of S is shown in 
Fig. 4. The quality indicator of this model, Q = 6.1 %, is 
significantly better than that of the original model, both 
qualitatively and quantitatively (compare with Fig. 2).

The obtained equation (6a) allows for predicting 
the shape of the deformation curve for various combina-
tions of φ, φ′ and Т. Examples of such graphs, compared 
with experimental curves, are shown in Fig. 5. The pre-
sented graphs illustrate both “good” and “not-so-good” 
agreement between the calculated and experimental curves. 

It is known from statistical theory [16] that increasing 
the sample size of experimental data can lead to improved 
accuracy in the description of a mathematical model 
(reducing its variance). To test this hypothesis, the num-
ber of original data points (the number of rows in the full 
matrix) was artificially reduced sequentially from ~900 
to ~200, and the model quality indicator Q was recalcu-
lated. The results of these calculations are presented in 
Fig. 6. It can be seen that reducing the size of the experi-
mental data sample by approximately 4 times (from 900 
to 200) does not significantly affect the predictive quality 
of model (6а).

This unexpected result may reflect the fact that 
only a few characteristic points are decisive in shaping 
the modeled curve (in this respect, the methodology is 
similar to the aforementioned Johnson-Cook method). 

An important test of the developed model’s functio-
nality is its validation on other datasets. Using the metho-
dology described above, the results of hot compression 
tests of materials from other groups were processed: heat-
resistant nickel alloy Ni33Cr27Fe35Mo3.5Mn1Cu0.6 from 
the Inconel group [17], heat-resistant nickel alloys [18], 
and the Ni56Cr24Co14Mo0.5W1Nb1.5Al1.5Ti1.5 alloy from 
the Nimonic group [19], cobalt alloys [20; 21], ferritic 
heat-resistant Cr12 – Cr27 steels [22], heat-resistant 9 % 
chromium DUO steel [23], and steel 20Cr13 [24]. It was 

Fig. 5. Comparison of experimental (1) deformation curves 
and dependencies constructed according to equation (6a) (2). 

Deformation modes: 
a – 1253 K, 0.1 s–1; b – 1253 K, 1.0 s–1

Рис. 5. Сопоставление экспериментальных кривых 
деформации (1) и зависимостей, построенных 

по уравнению (6а) (2) при режимах деформации: 
а – 1253 К, 0,1 с–1; b – 1253 К, 1,0 с–1

Fig. 6. Change in Q index of the generalized deformation model 
in the form (6a) depending on sample size 

(Y axis marks the range of observed values of Q) 

Рис. 6. Изменение показателя Q обобщенной модели деформации в 
форме (6а) в зависимости от объема выборки 

(по оси Y отмечен диапазон наблюдавшихся значений Q)
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found that the developed type of mathematical model is 
applicable to these cases as well. It is implied that for all 
these cases, the nomenclature and form of the multipliers 
in the relationship formula are unified across all studied 
alloys, though the coefficients for these multipliers, natu-
rally, differ. The predictive quality, evaluated by the Q, 
indicator ranged from 3 to 11 %. 

 Conclusions

A generalized mathematical model in multiplicative 
form has been proposed, which describes the relationship 
between stress, strain, strain rate, and temperature during 
large hot deformations (up to a true strain degree of 0.8), 
at temperatures ranging from 0.6 to 0.85Т/Тmelt) and strain 
rates between 0.01 and 10 s–1. The model predicts defor-
mation force with an accuracy of approximately 6 %, 
without relying on a priori (tabulated) or pre-determined 
structural, mechanical, or energy characteristics. 

The multipliers used in the developed mathematical 
model reflect experimentally observed interdependencies 
between the independent variables (φ, φ′, Т) and the spe-
cific features of the deformation curves. 

It has been established that this mathematical model is 
applicable to a wide range of metallic materials undergo-
ing hot deformation, with predictive accuracy for defor-
mation stress characteristics ranging from 3 to 11 %.

The obtained data allow for the analysis of not only test 
results with a fixed true strain rate φ′ – which is metho-
dologically complex – but also results from experiments 
conducted using the traditional method with a constant 
nominal strain rate , where the true strain rate φ′ is not 
constant.
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