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Abstract. The relationship between temperature-strain-force parameters in hot deformation processes is important in the forming prac-
tice. Of the two options for searching and describing such relationships (based on physical laws and mathematical techniques), in some
cases the method of mathematical search for the desired dependence turns out to be simpler. This is exactly the path implemented in the
abstracted message. For this propose, a matrix of initial data was created from digitized strain diagrams of the samples made of heat-resistant
1Cr12Ni3Mo2VNDBN 12 % Cr steel deformed to a true deformation degree of ~1 at 1253 — 1453 K and a compression rate of 0.01 — 10 s!
in true coordinates (¢ and S). In this matrix, for each point of the experimental deformation diagram the stress S, the deformation degree
¢, the deformation rate ¢', and the temperature 7 were indicated. The required mathematical model has a multiplicative form, which made
it possible to bring it into a linear form by taking logarithms and to search for coefficients with the factors (and after logarithm, with
terms in a polynomial) to use standard Mathcad operators with calculation algorithms based on the least squares method. The quality of
the model was assessed quantitatively by calculating QO — the sum of squared differences between the calculated and experimental stress
values with its normalization to the average stress value S from the entire array. For the found best form of relationship S =f (9, ¢', T) as

H+Ko+ M1l 1 ")+ Pl 1 '

log(S) = A+ Blog(¢) + Cllog(¢)] + Dllog(e)] + Elog(¢') + Flog(g) log(¢) + G £ + 1K+ Mlog(@) + ¥ T°g(“’ )+ Plog(@)108(@) 1he ¢ value
¢

was 6 % of § = 130 MPa. It was established that the found type of mathematical description of hot deformation is applicable to the analysis of hot

deformation processes of a wide variety of metal materials, while the accuracy of the predictive characteristics of the deformation stress is 3 — 11 %.
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Bua O6OBWEHHOW MATEMATUMECKOW MOAENU
ANA ONUCAHUA BONbLUNX TOPAYUX EDOPMALIUNA
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AHHOmayusA. B3auMocBs3b TeMIlepaTypHO-Ie(OpPMAaIIOHHO-CHIOBEIX [IAPaMETPOB B IIpolieccax ropsuei neopManyy HMEET BaKHOE 3HAUCHHE
B IpakTuke oOpaboTKM JaBneHueM. M3 ByX BapHaHTOB MOMCKAa M ONUCAHMS TaKUX CBs3eH (OCHOBAHHBIX Ha (PU3MUYECKUX 3aKOHOMEPHOCTSX
U MaTeMaTHYECKHX IPHEMax) B HEKOTOPBIX CIIydasX OKa3bIBACTCs 0oliee NMPOCTBIM CIOCO0 MAaTEMaTHYECKOrO IIOMCKA MCKOMOH 3aBHCHMOCTH.
VIMeHHO Takoii ImyTh peanu3oBaH B JaHHOI padore. /st 3Toro u3 oruppoBaHHbIX quarpamm aedopmanuu o0pasios xKapornpouHoit 12 %-Hoi
xpomuctoif cramu 1Cr12Ni3Mo2VNDN, nponehopMHpOBaHHBIX 1O HCTUHHOW cremeHu aedopmamuu ~1 mpu 1253 — 1453 K u crxopoctn
cxarust 0,01 — 10 ¢! B ucTuHHBIX KoopauHaTax (¢ u S) cO3JaBajlid MaTpMIly MCXOAHBIX JaHHBIX, B KOTOPOil Ul KaXIOH TOUKHM DKCIEPMMEH-
TaNbHOW JauarpaMmbl JedopMalii yKasbIBaIUCh HampspkeHHe S, CTerneHb AedopManuu ¢, cKopocth aedopmannu ¢ u temmeparypa 7.
[IpoBeneH MOMCK MareMaTH4ecKOW MOJENM B MYJIBTUILIMKATHBHOH (opMe, YTO MO3BOJIMIO JIOTapU(MUPOBAHMEM IIPUBECTH €€ K JMHEHHOMY
BUJLY, & JUIS TIOMCKA KOA(P(UIMEHTOB PH COMHOXKUTENSAX (@ MOCIie JIorapu(MUPOBAHUSI — MPU ClIAraeMbIX) MCIIOJIb30BaTh CTaHIAPTHBIC OIepa-
Tophl porpammel Mathcad, vcnonb3yromye anropuT™Mbel pacyeToB Ha OCHOBE METOJA HAMMEHBIIUX KBaapaToB. KauecTBO MoJenn OLEeHHBAIIN
KOJIMYECTBEHHO uepe3 pacyeT () — CyMMbI KBAJpaTtoB Pa3HOCTEH MEKIy pacueTHHIMH M DKCIICPUMEHTAIBHBIMHU 3HAYCHHSMH HAIPsDKCHUMH
C HOPMHUPOBKOH €€ Ha CpeJHee 3Ha4YeHHE HampshKeHust S OoT Bcero maccusa. [list HaiijieHHOW Hawmydiield ¢popmsl cesizu S = f (¢, ¢, T) Buga
@ , H+Ko+Mlog(g)+Nlog(¢) + Plog(e) log(¢")

log(S) = 4+ Blog(¢) + C[log(¢)]* + Dllog(e)]’ + E log(¢’) + F log(¢) log(¢") + G = + 7
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cocrasuio 6 % or S = 130 MIla. YcraHOB/ICHO, 4TO HAliACHHBII BHJl MATEMATHYCCKOIO ONUCAHUS TOPsCi ACOpMALH IPUMCHHM K aHATH3Y
MPOLIECCOB ropsiueii edopMaIi CaMbIX Pa3HOOOPA3HBIX METAIMYECKUX MATePHAIIOB, IPH TOM TOYHOCTh HPOTHO3HBIX XapPAKTEPHCTHK HAIPSI-

skeHus fedopmupoBanus cocrasiser 3 — 11 %.

Kniouesvle caoea: ropsiuas nedopmanus, MareMaTnieckas MOJEINb, ypaBHEHHE ApPeHHyca, )KaporpouHasi BHICOKOXPOMMCTAsl CTallb, METO/ HAUMEHb-

HIMX KBagpaToB

st yumuposanusi: benombitueB M.IO. Bun 06001meHHON MaTeMaTHn4ecKoi MOJEIH UIsi ONMHMCaHKs OOJIBIINX Topsiuux aehopMatuid. HMseecmus

8y306. Yepnas memannypeus. 2024,67(5):616-624. https://doi.org/10.17073/0368-0797-2024-5-616-624

[ INTRODUCTION

Pressure processing is the primary method for
obtaining metal products of a specified grade and size.
From the perspective of production efficiency (balance
of equipment and billet heating costs), hot deformation
has an undeniable advantage. Cold deformation is used
to impart high mechanical properties at the final stage
of pressure processing through the mechanism of cold
work hardening (sheet, wire, strip, rod, etc.).

The ability to control hot deformation processes is
determined by knowledge of the relationships between
such variable factors as pressure, deformation, strain rate,
and temperature. Understanding these patterns allows for
the introduction of computer control over hot deformation
processes (such as controlled rolling for automobile body
sheet) to regulate the structure and mechanical properties
of the final product.

Basic equations relating variables of the Hollomon
type (H) [1; 2], exponential-power law (ES) [3], Lud-
wigson (L) [4], Zener-Hollomon (Z and Z1) [5; 6], Bird—
Mukherjee—Dorn (BMD) [7], the modified Zener-Hollo-
mon equation (ZM) [5], and Johnson-Cook (DK) [8] are
known. These equations mathematically appear as fol-
lows:

§=5,0" (H)
o = Ag"exp(ke); (ES)
S=K,0" +exp(K, + K,0); (L)

) g T-T. )"
G:(A+Bs )|:1+Cln[gﬂ(l—Tm_Trj ; (DK)
Z = éexp(R—QT]; (2)
€= AF (o) exp(—R—QTj, z1)

where S is the true stress, MPa; S, K, K|, K,, 4, o, n are
material constants, o = B/n; @ is the true strain, dimension-
less; o is the flow stress, MPa; ¢ is strain, dimensionless;
Z is the Zener-Hollomon parameter; ¢ is the strain rate, s™;
Q is the activation energy of hot deformation, kJ/mol; R is

the universal gas constant, 8.314 J/mol-K; T is the abso-
lute temperature, K; F(c) = 6%, ac < 0.8; F(c) = exp(Bo),
ac > 1.2; F(o) = [sink(aoc)]” for all other ao.

The replacement of the hyperbolic law F(c) in equa-
tion (Z1) gives

é = A[sin h((xc)]nexp(— p RQ—T] (A)

where p is a constant.

Equation (A) — the Arrhenius equation in the form
of the hyperbolic sine [9; 10] — can better describe
the dependence of stress on temperature and strain rate
during steady-state flow. According to the definition
of the hyperbolic law, the flow stress can be expressed as
a function of the Zener-Hollomon parameter in the form:

1/n 2/n 1/2
o=t @ {@ +1} . @
o

£= DOEbAgéexp(—gji;
Ed

_B_O " - g l/n (g jl/Z
o="_'& exp( Bza)lnﬂAJ + A+1 . (ZM)

The above equations are not universal. The Hollo-
mon-type equation (H) is used to determine the parame-
ters of the cold and warm deformation curve, where,
until the point of plastic flow instability (most often
until the onset of necking), the strain hardening coeffi-
cient do/d¢ is positive (i.e., the curve continuously rises,
although with a constantly decreasing slope). The expo-
nential-power equation (ES) describes well the hot defor-
mation curve, where there is a stage with a constantly
decreasing load (although quite slowly) as deformation
increases, not associated with the onset of necking (at this
stage, processes are controlled by dynamic polygoniza-
tion), but it poorly describes the stage of dynamic
recrystallization. The first two types of equations do not
account for temperature and strain rate. The Zener-
Hollomon (ZM) equations and their variants are used
to describe those hot deformation curves where the stage
with a constant strain rate is pronounced (at this stage,
the curve runs parallel to the abscissa axis, which may be
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due to dynamic polygonization or dynamic recrystalliza-
tion), and the found equations allow predicting the rela-
tionship between strain rate at this stationary stage with
temperature and stress, but without considering the degree
of deformation.

The number of generalized mathematical dependen-
cies (i.e., considering all four factors — strain ¢, strain rate
¢, temperature 7, and stress o) hat various researchers
aim to derive from experimental results is limited. These
include the general Arrhenius-type dependencies

o= Ae"g" exp(gj,
RT
the Zerilli-Armstrong dependency
o =C,+ C,&"exp[-C,T+ C,In(&)],

and the combined equation

n - m Qj
= Ae"exp(ke)e" exp| — |,
o xp(ke) XP(RT

where C;, C,, C,, C, are constants.

The relationship between all four variables (o, €, &, T)
can be represented by generalized model equations
(GM) [1; 11]

nem [ O j
o =Ae"¢"exp| = 1.1
p( RT (I.D
or after logarithmization
.. D
log(c) = A+ Blog(e) + Clog(¢) +F. (1.1a)

Combining equations (ES — exponential-power law)
and (GM — generalized model) [12] gives

n ~m Q j
G = Ag"exp(ke)e” exp| —
p(ke) p( RT
or after logarithmization
.. E
log(c) = A+ Blog(e) + C(e) + Dlog(€) + T

The generalized Zerilli-Armstrong equation [13] is
also known

6 =C,+ C,e"exp[(-C,T+ C,In(#)],
after logarithmization of which (assuming C,=0

at the initial cycle), the relationship between variables
can be expressed as a functional dependence in the form

log(c) = A + Blog(e) + Clog(é) + DT.
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All these equations are used both to describe deforma-
tion processes and to predict (calculate) the parameters
required by engineers or researchers — stress, strain, or
strain rates.

Some researchers introduce structural parameters
(grain size, dislocation density, etc.) into deformation
models. Such models include the Bird—Mukherjee—
Dorn (BMD) and Johnson-Cook (DK) models [7; 8].
However, the application of such methods requires pre-
liminary determination of a large number of structural
parameters for each deformation curve (up to three), so
the total number of determined variables can amount
to several dozen.

The experimental part of hot deformation research
is conducted on small-sized test samples. The parame-
ters of hot pressure processing are simulated by vary-
ing temperature, strain rate, and deformation degree
while recording the load on the sample. The purpose
of such tests is to obtain a set of deformation curves
constructed in the coordinates “strain € — stress ¢ while
varying the test temperature 7 and the nominal strain
rate €, which are kept constant in a single experiment,
and then to find a formula that links all the variables
(both dependent and independent). This is the proce-
dure for constructing a generalized mathematical model
of hot deformation. For an adequate comparison of the
mechanical behavior of samples in such tests with
the evolution of the structure, the experiments are con-
ducted in a manner that maintains a constant true strain
rate ¢’ throughout the entire test, and the recorded force
on the sample is converted into true stress S. When using
“true coordinates” S and o, the change in the dimensions
of the samples during deformation is taken into account
(when using “nominal coordinates” ¢ and ¢, all the calcu-
lated mechanical characteristics are related to the initial
dimensions of the samples).

Analysis of mathematical methods used to obtain
coefficients for various dependencies leads to the conclu-
sion that the simplest ones are the “one-step” methods,
which, through logarithmization or other mathematical
transformations, reduce the original model (chosen as
a hypothesis to test its quality) to a linear form. After
this, determining the coefficients of such a model
becomes trivial (the procedure for finding the coefficients
of linear equations in typical calculation programs such
as Excel, Mathcad, Origin, MATLAB, Statistica, and
the like is extremely simple and formalized). In con-
trast, the procedure for determining the coefficients for
variables in the Z1 deformation law, which is most often
used by researchers, is multistep, with several interme-
diate stages of analysis. The authors of [14; 15], based
on the ideology of simplifying the search for a deforma-
tion law, developed a method for analyzing the creep
process, in which the number of experimental variables
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was limited to three (stress, temperature, and strain rate).
The analysis, carried out using such a simplified model,
showed that the first step in such a process should be
the experimental or theoretical (or hypothesized) search
for the form of the model that is convenient for mathe-
matical transformations. For the case of creep analysis,
the following was demonstrated:

—two main methods used in practice — Hollomon’s
method (or its special case, the Larson-Miller method)
and the Arrhenius approximation — allowed models
to be obtained with similar predictive accuracy;

—in the factors of both models, which account for
the influence of deformation temperature, it is advisable
to also consider the level of applied stresses (which,
according to creep test methodology, are always initial);

— accounting for the previous point inevitably leads
to the appearance of a “cross” influence of independent
factors in the generalized deformation equation (such as
“stress o(1/7)”).

These results led to the idea of applying the same
procedures to find the generalized mathematical law
of hot deformation, in which the fourth variable — degree
of deformation — inevitably appears.

The aim of this work is to develop a generalized
mathematical equation to describe large hot plastic
deformations, taking into account the simultaneous
influence of strain ¢, strain rate ¢’, and temperature 7,
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without relying on the structural-mechanical constants
of the material.

- DESCRIPTION OF THE ANALYSIS OBJECT AND
THE PROCESSING METHODOLOGY

All researchers conducting multifactor analysis
of hot deformation use the results of compression tests
on cylindrical samples with a diameter of about 10 mm
and a height-to-diameter ratio of ~1 to 2. In this study,
the analysis was carried out using the results described
in [12]. Yang-Hong Xiao and Cheng Guo, in their report,
presented data from compression tests up to true strain
values of ~1 at 1253 — 1453 K and compression rates
of 0.01 — 10 s™! on samples of heat-resistant 12 % chro-
mium steel 1Cr12Ni3Mo2VNbN. The shape of the initial
deformation curves is shown in Fig. 1.

By digitizing these curves using the Grafula program,
an array of experimental data was obtained in the form
of a table containing approximately 800 rows. In four
columns, the table recorded data on deformation, stress,
strain rate, and temperature for each experimental point
(approximately 40 points for each of the 20 experimental
curves). The independent variables were true strain ¢/,
and temperature 7 (in K). The dependent variable was
true stress S. A fragment of the initial data table is shown
in Table.

210

175

140

105

70

35
300

250

200

150

100

0 o1

02 03 04 05 06 07

True strain

Fig. 1. Curves of hot compressive deformation in true coordinates according to [12] at deformation rate, s™':
0.001 (a); 0.1 (b); 1 (¢); 10 (d) and temperature, K: 7 — 1253; 2 —1303; 3 — 1353; 4 — 1403; 5 — 1453

Puc. 1. Kpussle ropsiueit iepopManum cKaTueM B MCTHHHBIX KOOPMHATAX 110 JaHHBIM paboTsl [12] npu ckopoctu aedopmaimu, ¢
0,001 (a); 0,1 (b); 1 (¢); 10 (d) u Temneparype, K: 1 — 1253; 2 —1303; 3 — 1353; 4 — 1403; 5 — 1453

619



N3BECTUA BY30B. YEPHASA METAJIJIYPTUA. 2024;67(5):616-624.
Benombvimyes M.H0. Buj, 0606111 HHON MaTeMaTH4eCKOW MO/IeJTH AJ1s OTMCAHUS GO/IBLINX TOpsYuX Aedopmanuit

[ RESULTS AND DISCUSSION

Taking into account the results of studiesde-
scribed above, the first step was to base the analysis
on the generalized Arrhenius-type dependency (GM).
Using the regress function from the Mathcad program,
the values of the coefficients 4, B, C, D were obtained
in equation (1.1a). After reversing the logarithmic form
of equation (1.1a) to the direct form (1.15) the following
equation was derived

6 =5.633-10"*"077g 01 exp(— 66'487]

RT

(R=28.315 J/mol-K). (1.1b)

A visual assessment of the model’s quality was con-
ducted by comparing the experimental values of S with
the values calculated using the derived equation (1.15)
(Fig. 2).

To quantitatively assess the quality of the mathe-
matical model, the sum of squared differences between
the calculated and experimental stress values was
computed, normalized to the mean stress value S using
the formula

@

n

Q - ZS

For the model in the form (1.15), this value was
approximately 14 %.

The comparison of the visual and quantitative assess-
ments shows that, despite the small average deviation
of the predicted values from the experimental ones,
the model (1.15) provides poor predictions for high-stress
intervals (the final sections of the compression curves
with large degrees of deformation) (Fig. 2).

Fragment of initial data array for analysis
of 1Cr12Ni3Mo2VNDN steel hot deformation

@parMeHT MacCHBA MCXOJAHBIX JAHHBIX /IS AaHAJIHM32
ropsiueii negopmanuu craan 1Cr12Ni3Mo2VNDbN

Number | S, MPa | ¢, fractionof 1 | ¢',s! T,K
1 79.5 0.08876 0.010 1453

2 97.7 0.02500 0.010 1453

3 106.8 0.03700 0.010 1453

4 114.3 0.05100 0.010 1453

5 117.8 0.06700 0.010 1453

6 121.9 0.08000 0.010 1453

7 124.2 0.09400 0.010 1453
889 120.3 0.61200 10 1253
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Fig. 2. Comparison of calculated and experimental stress values
according to the model (GM)

Puc. 2. ComocTaBieHNE PaCYETHBIX U 3KCIEPUMEHTAIBHBIX 3HAYCHUH
HanpsbkeHui 1o mozeru (OB)

In order to refine the assumed model, an analysis
of individual deformation curves was conducted. Since
the primary mathematical method for determining coef-
ficients for the variables was linear regression analysis
using the least squares method, the focus of the analy-
sis was on linear equations with a logarithmic form
of the variables. Preliminary trials (where “trial” refers
to various mathematical formulations of the relationships
between the variables) for determining equations that
describe individual deformation curves (each of these
curves was obtained at constant values of temperature
and strain rate) showed that for most deformation curves,
the equation of the form

S=A()P10°® 3)

or, after logarithmization

log(8) =4, + B,log(9) + C,(¢) (a)
provides a good description. This representation allows
obtaining Q values for individual curves in the range
of 1.5 to 5 % (Fig. 3).

The accuracy of the prediction improves even fur-
ther when the expression (3a) is modified by including
a multiplier in the form of the ratio of the strain degree ¢
to the logarithm of this value:

D2(¢)
log(o)

log(S) = A2 + B2log(¢) + C2(p) + 4)

The quality of such equations, evaluated by the para-
meter O ranges from 0.5 to 1.7 % (Fig. 3), and the rela-
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tionship between variables in its direct form (without
logarithms) is described by the equation

D3(¢)

S =¢” exp[/B +C3() + —} (4a)

log(¢)

Further development of this model followed the next
steps. In the deformation curves obtained from tests con-
ducted at low temperatures and/or high strain rates, there
is an extended section of significant stress increase after
the yield point on the graphs, with a high strain harde-
ning coefficient D = dS/de. Such a feature of the curve
shape can be accounted for by introducing a third-degree
polynomial of strain ¢. Based on this logic, quadratic
and cubic terms of the strain degree ¢ were added to the
model in its logarithmic form:

log(8S) = A4 + B4log(p) + C4log(p)* + D4log(e)’ +

+ E4(q) + 2@

log(¢)

(40)

In its direct form, this expression is described by the
equation

F5(9)

AS+ES
HEer log(o)

S =exp

(PBS+C510g((p)+D5[log((p)]2

(4d)

With this representation, the parameter Q for indivi-
dual curves decreases from 0.3 to 1.0 %.

Taking all of the above into account, a modified mathe-
matical model was developed to describe the complete
dataset. The modifications to the model (1.1) in its loga-
rithmic form (1.1a) were as follows:

— terms accounting for the degree of deformation ¢
and the strain rate ¢’ were introduced (under the exponen-

200
O Soesed

150 - 1
<
¥
> 100
“

| | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3. Description of S — ¢ dependences with formula (3):
O, O — experiment, dashed lines — calculated values;
1-T=1253K,¢'=0.1s12-T=1453K, ¢'=0.1s!

Puc. 3. Onucanue 3aBucumocteid S — @ popmyinoit (3):
O, O — 9KCIIEPUMEHT, IITPUXOBBIC JIMHUU — PACUCTHBIC 3HAYCHUS;
1-T=1253K,¢'=0,1 ¢, 2-T=1453K, ¢'=0,1 ¢!

tial sign) into the multiplier that accounts for the effect
of deformation temperature;

— the mutual influence of independent factors on each
other was accounted for by adding a multiplier (¢¢');

— dependencies on the square and cube of the strain
degree ¢ were introduced through corresponding multipliers.

The general form of the equation for the relationship
between variables, after being reduced to a linear form
by logarithmization, looks as follows:

log(S) = 4+ Blog(g) + Cllog(¢)]* + D[log(¢)]’ +
+Elog(¢') + Flog(o) log(¢") + G[ﬂ,] "
¢

. H + Ko+ Mlog(p) + Nlog(¢') + Plog(o) log(¢")
T )

)

Finding the coefficients 4 — P for equation (5), which
ensures the minimum sum of squared differences between
the calculated S, and experimental Sexp values, con-
ducted using the Mathcad program, made it possible
to obtain the desired equation for the relationship in
the following form

log(S) = —0.738 —1.311log(¢) — 0. 564[log(p)]* —
—0.13[log(e)]* +0.5841log(¢’) —

~8.779-10* log() log(¢) —1.18-10 (ij -
¢

L3727 10° +82.3519+1.096 107 log(¢) .

T
N 593.8log(¢") + 76.61og(p) log(¢) ’ (6)
T
300
200
]
[a W)
24\
U)%
100
| ]
0 100 200 300
S....» MPa

cale?

Fig. 4. Comparison of calculated and experimental stress values
according to model (6a)

Puc. 4. ConocraBieHHe PaCUueTHBIX U SKCIIEPUMEHTAIBHBIX 3HAYCHHUN
HaNpsDKEHUH 110 Mozen (6a)
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which can be transformed into its direct form:

S = 10704738 (@!)0.584 x

~1.311-0.564log(()—0.131[log()]> ~8.779-10* log(¢) y

x@
><exp{8583.3 +198.7¢ +2524log(p)
T
_1367.5log(¢") +176.41og(e) log(e')
T
—2.718-10‘{3]}, (6a)
¢
or with the temperature component separated:
§ = 1070738 ()58
% (p—m 1-0.5641og()—0.13 1[log(¢)]* - 8.779:10* log(¢) y
x exp{—2.718 107 (ﬁﬂ x
¢
o ex1{8583.3 +198.7¢ +2524log(¢)
T
_1367.5log(¢") +176.4log(¢) log((p’)} (6h)
. .
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Fig. 5. Comparison of experimental (/) deformation curves
and dependencies constructed according to equation (6a) (2).
Deformation modes:
a—1253K,0.1s;5-1253K,1.0s™!

Puc. 5. ConocTtaBlieHHE SKCIICPHMEHTAIBHBIX KPUBBIX
nedopmanuu (/) U 3aBUCUMOCTEH, TOCTPOCHHBIX
0 ypaBHEHUIO (6a) (2) npH pexxuMax aedopMaum:
a—1253K,0,1 ¢, b—1253K, 1,0 ¢!
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Fig. 6. Change in Q index of the generalized deformation model
in the form (6a) depending on sample size
(Y axis marks the range of observed values of Q)

Puc. 6. M3menenne nokaszarens Q 00001IeHHO# Mozienu eopMalni B
(dopme (6a) B 3aBHCUMOCTH OT 00beMa BEIOOPKH
(o ocu Y oTMeueH Anara3oH HaOMIaBIINXCS 3HaUeHUH Q)

A graphical illustration of the agreement between
the calculated and experimental values of S is shown in
Fig. 4. The quality indicator of this model, Q = 6.1 %, is
significantly better than that of the original model, both
qualitatively and quantitatively (compare with Fig. 2).

The obtained equation (6a) allows for predicting
the shape of the deformation curve for various combina-
tions of @, ¢’ and 7. Examples of such graphs, compared
with experimental curves, are shown in Fig. 5. The pre-
sented graphs illustrate both “good” and “not-so-good”
agreement between the calculated and experimental curves.

It is known from statistical theory [16] that increasing
the sample size of experimental data can lead to improved
accuracy in the description of a mathematical model
(reducing its variance). To test this hypothesis, the num-
ber of original data points (the number of rows in the full
matrix) was artificially reduced sequentially from ~900
to ~200, and the model quality indicator Q was recalcu-
lated. The results of these calculations are presented in
Fig. 6. It can be seen that reducing the size of the experi-
mental data sample by approximately 4 times (from 900
to 200) does not significantly affect the predictive quality
of model (6a).

This unexpected result may reflect the fact that
only a few characteristic points are decisive in shaping
the modeled curve (in this respect, the methodology is
similar to the aforementioned Johnson-Cook method).

An important test of the developed model’s functio-
nality is its validation on other datasets. Using the metho-
dology described above, the results of hot compression
tests of materials from other groups were processed: heat-
resistant nickel alloy Ni,;Cr,,Fe;.Mo, Mn,Cu,, from
the Inconel group [17], heat-resistant nickel alloys [18],
and the Ni,Cr,,Co,,Mo, ;W Nb, (Al .Ti . alloy from
the Nimonic group [19], cobalt alloys [20; 21], ferritic
heat-resistant Cr12 — Cr27 steels [22], heat-resistant 9 %
chromium DUO steel [23], and steel 20Cr13 [24]. It was
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found that the developed type of mathematical model is
applicable to these cases as well. It is implied that for all
these cases, the nomenclature and form of the multipliers
in the relationship formula are unified across all studied
alloys, though the coefficients for these multipliers, natu-
rally, differ. The predictive quality, evaluated by the O,
indicator ranged from 3 to 11 %.

[ ConcLusiOoNs

A generalized mathematical model in multiplicative
form has been proposed, which describes the relationship
between stress, strain, strain rate, and temperature during
large hot deformations (up to a true strain degree of 0.8),
at temperatures ranging from 0.6 to 0.857/7 ) and strain
rates between 0.01 and 10 s™!. The model predicts defor-
mation force with an accuracy of approximately 6 %,
without relying on a priori (tabulated) or pre-determined
structural, mechanical, or energy characteristics.

The multipliers used in the developed mathematical
model reflect experimentally observed interdependencies
between the independent variables (¢, ¢’, 7) and the spe-
cific features of the deformation curves.

It has been established that this mathematical model is
applicable to a wide range of metallic materials undergo-
ing hot deformation, with predictive accuracy for defor-
mation stress characteristics ranging from 3 to 11 %.

The obtained data allow for the analysis of not only test
results with a fixed true strain rate ¢’ — which is metho-
dologically complex — but also results from experiments
conducted using the traditional method with a constant
nominal strain rate & where the true strain rate ¢’ is not
constant.
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