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Abstract. Powder metallurgy of high-entropy alloys has gained significant attention in modern applications due to its low cost and near-net-shape
formability. This overview presents the state-of-the-art research on powder metallurgy of high-entropy alloys for high-temperature applications,
covering basic solid state fabricating processes, phase composition, and advanced mechanical properties recently attained. The analysis showed
that various methods of production and mixing of powder components, including self-propagating high-temperature synthesis, magnesium reduc-
tion, hydrogenation, mechanical alloying, plasma spheroidization, centrifugal plasma sputtering of the bar, and conventional mixing of elemental
powders in high-energy mixers are used to produce powder mixtures. The most common consolidation method is spark plasma sintering, which
allows obtaining compacts with high speed and preservation of fine structure. Also, for the production of long bars and billets, the extrusion of
powder mixtures in shells is used. A key feature of the chemical compositions of billets produced by methods of powder metallurgy are the possi-
bility of obtaining oxide-disperse-strengthened powder compacts, which provides additional hardening at elevated temperatures. The main
elements used in the creation of high-entropy alloys for application at elevated temperatures are the refractory metals. Therefore, in order to reduce
the density of new alloys, compositions with aluminum, titanium, and refractory oxides are being developed. Finally, this review identifies unre-
solved and critical issues in the development of approaches to obtaining high-entropy alloys using powder metallurgy methods for their practical
implementation in modern industry.
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AnHomayus. IToponikoBasi METaTyprisi BRICOKOSHTPOITUIHBIX CIUIABOB IIPUBJICKACT 3HAYUTEIILHOE BHUMAaHUE Oilaroapsi CBOCH BBICOKOH TEXHOJIO-
TMYHOCTH M HU3KOH CTOMMOCTH. B 3TOM 0030pe mpecraBieHbl HOBEHIIME UCCIIEIOBAHMS B 00IACTH TOPOIIKOBOH METAJUTypriy BEICOKOIHTPO-
NUHHBIX CIJIABOB, pa3pabOTaHHbIX [yl IPUMEHEHHS IIPH BBICOKHX TeMIeparypax. PaccMarpiBaroTcs OCHOBHBIE MPOLIECCHI MTOTYUCHHUSI TOPOIIKOB
M KOMIIAKTOB M3 HUX, XUMHUYECKHUH 1 (ha30BbIii COCTAB, IFIOTHOCTh, MEXaHMYECKUE CBOMCTBA MPH MOBBIIICHHOH TEMIIepaType, TePMOCTAOUIBHOCTb.
IIpoBenEHHBII aHAIM3 OKA3aJ1, YTO JJIs OJIYYCHHUS TOPOIIKOBBIX CMECEH MPUMEHSIOTCS pa3JInYHbIC METO/IbI ITPOM3BO/ICTBA U CMEILICHHUS ITOPOILI-
KOBBIX KOMITOHEHTOB, BKJIFOYas CaMOPACHPOCTPAHSIONIMNACS BBICOKOTEMIIEPATYPHBIN CHHTE3, MAarHHOTEPMHUIO, THAPUPOBAHUE, MEXaHHYECKOE
JIETUPOBAHHKE, TUIA3MEHHYIO CEepONIU3aLINI0, ICHTPOOSIKHOE PaCIIbIJICHUE NPYTKA IUIa3MOH M TPAAULMOHHOE CMEIICHHUE 3JIEMEHTHBIX TTOPOIIKOB
B BBICOKODHEPIeTHUECKUX cMecuTelsix. Haubonee pacnpocTpaHeHHBIM CIOCOOOM KOHCOMHMIAIMHU SIBISIETCS MCKPOBOE IUIA3MEHHOE CIIeKaHHE,
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TIO3BOJIAIOLIEE I10JIy4YaTb KOMIIAKTBI C BBICOKOH CKOPOCTBIO U COXpaHCHUEM TOHKOH CTPYKTYPBI. Taxoxe JUIsT TPOU3BOACTBA JUIMHHOMEPHBIX
TIPYTKOB U 3arOTOBOK IIPUMEHSICTCS SKCTPY3US IMOPOIIKOBBIX cMmeceil B 06omoukax. KimroueBoit 0cOOEHHOCTBIO XMMUYIECKUX COCTABOB 3aroToBOK,
TPOU3BOAUMBIX METOAAMU l'[OpOLHKOBOﬁ METAJUTYPruu, sBJISIETCA BO3MOXKHOCTDH ITOJYUCHHSA AUCICPCHO-YIPOUYHCHHBIX OKCHJIAaMU IOPOIIKOBBIX
KOMITAKTOB, 4TO obecrieunBaeT JOMNOJHUTEIIBHOC YIIPOUHCHHUC IIPU MTOBBINICHHBIX TEMIICpaTypax. OCHOBHBIMH JJICMCHTaMHU, UCIIOJIb3YCMbIMU ITPU
CO31aHuHn BLICOKOSHTpOHPIi’IHBIX CIUTaBOB [JIs1 IPUMEHEHU B YCJIOBUAX IMOBBILICHHBIX TEMIICPATYP, ABJIAIOTCS TYTOIVIABKUE METAJUIbI. H03TOMy
JJIS1 CHUOKCHUSA UX INIOTHOCTH paSpaGaTI)IBaIOTCH COCTaBbI C AJIFIOMUHUEM, TUTAHOM, a TAK)KC TYIOIUIABKUMH OKCHUIaMHU. KpOMe TOT'0, B O9TOM O630p€
0003HaYECHBI HCEPEIICHHBIC U KPUTUYECKHUC BOITPOCHI pa3pa60TKH ITOAXO0B K ITOJIYUCHHIO BbICOKOSHTpOHHﬁHBIX CITaBOB METOaMH l'[OpOIHKOBOﬁ
MCETAJLTYPTryUU AJI IPAKTUICCKOTO BHEAPCHUS UX B COBPEMCHHYIO HHAYCTPHUIO.
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- INTRODUCTION

High-entropy alloys (HEAs) are a new generation
of alloys that have been developed since 2004 [1;2].
Despite intensive research over the past 20 years in
the field of high-entropy materials, these alloys have not
yet found widespread use in modern industry, although
they continue to gain popularity in scientific studies each
year [3; 4] due to their high physical, mechanical, and
operational properties [5; 6]. High-entropy alloys are
resistant to oxidation at high temperatures, which poten-
tially broadens their technological applications, including
replacing nickel-based alloys in turbine systems [7; 8].
In their review, O.N. Senkov et al. [9] explore two groups
of HEAs for high-temperature applications. The first
group includes HEAs based on 3d transition metals such
as Co, Cr, Cu, Fe, Mn, Ni, and Ti. These alloys have a yield
strength of over 1000 MPa at 600 °C. However, accord-
ing to the authors, none of the HEAs presented possess
properties superior to modern nickel-based heat-resistant
alloys. The heat resistance of HEAs quickly decreases at
temperatures exceeding ~800 °C, similar to that of nickel-
based heat-resistant alloys. Additionally, their ability
to withstand high temperatures is limited by their mel-
ting points, which are only slightly different from those
of commercial nickel-based heat-resistant alloys.

Refractory high-entropy alloys (RHEASs) represent
the second group of HEAs, developed by O.N. Senkov
and co-authors [10] for high-temperature applications.
Since 2010, this category of alloys has attracted the inte-
rest of specialists due to their ability to maintain high
static strength up to 1600 °C and potentially higher.
The first RHEA was created using five refractory compo-
nents (Mo, Nb, Ta, V, and W), but later alloys were made
from elements of Group IV (Ti, Zr, and Hf), Group V
(V, Nb, and Ta), and Group VI (Cr, Mo, and W) [10].

Refractory high-entropy alloys show promise for use
in structures and products operating at high temperatures
(above 1000 °C) and are considered as replacements
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for nickel-based heat-resistant alloys. In their recent
review, W. Xiong et al. [11] demonstrated that HEAs
exhibit excellent mechanical properties over a wide
range of temperatures and increased resistance to high-
temperature oxidation. Currently, there is a significant
increase in research on RHEASs, which is also confirmed
by the growing number of reviews on RHEAs developed
for applications in nuclear engineering [12; 13].

Traditionally, gas-phase, liquid-phase, and solid-phase
methods are used to produce HEAs [3]. Powder metallurgy
methods (solid-phase methods) are considered the most
rational for obtaining RHEAs for high-temperature appli-
cations [14]. Fig. 1 illustrates the process for the produc-
tion of HEAs, enabling the creation of high-quality billets
with geometries that meet consumer requirements. How-
ever, the analysis of recent reviews [11 — 13] in the field
of HEAs for high-temperature applications indicates
a lack of information on solid-phase powder metallurgy
processes for HEAs since 2020.

Thus, it becomes relevant to assess the latest deve-
lopments and trends in the field of HEAs for high-tem-
perature applications. Therefore, this review examines
the criteria for selecting chemical elements for the solid-
phase powder metallurgy process, as well as consolida-
tion methods, density, phase composition, mechanical
properties, and future trends regarding HEAs.

[ MATERIALS AND METHODS

Using the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) crite-
ria [15], both Russian and international databases were
analyzed: elibrary.ru, mdpi.com, Springer.com and
sciencedirect.com.

The selected studies met the following criteria:
— mechanical properties at elevated temperatures;
— oxidation resistance;

— thermal stability.
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[ RESULTS AND DISCUSSION

After screening for the specified criteria, thirty-nine
studies related to powder metallurgy of high-entropy
alloys (HEAs) for high-temperature applications were
selected. The Table provides data on the studies that con-
tain results meeting all of the aforementioned criteria.

Chemical composition

Recent studies have examined innovative oxide-disper-
sion strengthened (ODS) refractory high-entropy alloys
(RHEAS). For example, in the study [32], 15 % Al,O,
was used to produce lightweight refractory alloys
based on TaNbVTi. Zong L. et al. [33] used nanoscale
ceramic particles of m-ZrO, to strengthen the refractory
high-entropy alloy NbMoTaW, and in the study [34],
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O
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[ Spherical
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Fig. 2. Schematic diagram of plasma spheroidization system
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they applied similar reinforcement for the WMoNbTaV
alloy. Similarly, nanoscale Y,0, particles were used in
the study [35]. A new NbTaTiV ODS RHEA containing
0.35 wt. % Al,O, was investigated in the study [25].

Strengthening HEAs with nanoscale refractory
oxides can only be achieved through powder metal-
lurgy methods. The traditional chemical compositions
of HEAs, presented in the Table, replicate their composi-
tions obtained earlier using liquid-phase methods [2; §;
10 — 12]. Therefore, the application of powder metallurgy
methods expands the technological capabilities for pro-
ducing HEAs with the widest range of chemical composi-
tions [36 — 39].

Powder preparation

In the studies [40;41], the approach of obtaining
powder mixtures through simple mixing without addi-
tional milling was used. The most common method for
producing powder is mechanical alloying in a planetary
mill [42].

To expand the raw material base, in the study [43],
a powder mixture was synthesized using a blend of tita-
nium hydride and elemental powders. In the same study,
Nb hydride powder and Ta hydride powder were used.
The release of hydrogen during the decomposition
of the hydrides helps to clean the surface of the metal
powders from impurities.

For the agglomeration of fine powders, spray drying
is applied. In the study [44], after spray drying, the HEA
powder granules were processed in a plasma spheroidi-
zation unit (Tekna Nano-15). Induction thermal plasma
(Fig. 2) was also used in the study [45] for spheroidizing
WTaMoNbZr powder, which was originally irregularly
shaped and obtained by grinding a hydrogenated ingot.
The deoxidation during plasma processing contributed
to refining the alloy.

In the study [46], pre-rolled plates with a known grain
size were hydrogenated. The authors highlight the eco-
nomic efficiency of the mechanical milling method and
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Information on the reviewed studies

HNudopmanus o6 ucciaeroBaHusaX, BKJIOYEHHBIX B 0030p

Author, year

Chemical composition

Powder preparation

Mechanical properties at elevated temperature

Phase composition

Consolidation method

Oxidation resistance/thermal stability

TaNbVTIiAL (x=0, ..., 1.0)

MA (Mechanical alloying)

Specific strength 88.37 MPa-cm’/g, T= 900 °C;

Xiang L. et specific strength 16.03 MPa-cm?/g, T= 1200 °C
al., 2020 [16] BCC SPS gisrﬁa;:.(nzl)asma _
= o — L Jp— L 0/.
e I = o s e
FCC + MeC HP (Hot pressing) -
S | Forst Al Koy o | G (O aomizaton 7=400°C, - 65 GPa
al., 2021 [18] BCC-B2 SPS _
gt o, Coorom on R e o5 160
2021 [19]
FCC HP -
ZhangR.et | ALCrTiMo (x=0.25, ..., 1.00) MA -
al., 2021 [20] BCC SPS Heat resistance at 1000 °C for 7 h
Liu Q.. MoNbTATiV MA 0Nt (7= 1300 i vacwury
2021 [21]
BCC SPS -
T=1000 °C, o = 1978 MPa, specific strength
Peng H. et NbMoTaWV MA 170.51 MPa-cm®/g; 7= 1200 °C, 6 = 1433 MPa,
al., 2022 [22] specific strength 123.53 MPa-cm®/g
BCC + Tetrahedral phase SPS -
Gao F. et al., TiAlV  CrMo MA -
2022 [23] BCC + Laves phases - Retention of nanostructure at 1200 °C
Ujah C. et al., Tiy Al V,Fe Ni Cr MA Mechanical properties higher than Ti64 alloy
2023 [24] FCC + BCC SPS -
Zhang X. et NbTaTiV + 0.35A1,0, MA 6,, =690 MPa (T= 1000 °C)
al., 2023 [25] BCC +ALO, HP -
ilflliozvo;v. CoysNijoFe; CrigAlys MA+CBC specif?c0 ;i::lii’ itzrgri\gt}l)la,l6T7f62018IP(afj cm/g
[26] B2 +BCC +FCC + L1, SPS -
Boztemur B. WNbMoVTaCrAl MA -
et al. 2023 BCC+Ta,vO, + (Nb, Ta)C + SPS Retention of nanostructure at 1150 °C
[27] + WZCO.XS + A1203
Das S. et al., AlCoCuFeNi MA -
2023 [28] FCC +BCC - Retention of nanostructure at 900 °C
Qin M. etal., | Ti-Nb—Mo-Ta—W-Ni—Zr MA -
2023 [29] BCC + Secondary phases SPS Grain size <150 nm after 5 h annealing at 1300 °C
Gao Feet al., TiAIV,, .CtMo MA -
2023 [30] BCCI1 +BCC2 + AlLO, SPS Retention of nanostructure at 1200 °C
Al-Fe—Co—Cr—Ni GA 0,, = 518 MPa (T'= 600 °C)
FuA.etal, Hot extrusion (extrusion
2023 [31] FCC +BCC ratio 7:1, temperature -

1150 °C)

* Tensile test.
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the clear correlation between the grain size of the plate and
the resulting powders, which ranged from 6 to 102 um.

Gas atomization (Fig. 3) is the primary method used
for producing spherical powders. In the study [18], gas
atomization was used to produce HEAs from 3d transition
elements and refractory elements, while in the study [19],
the same method was applied but exclusively for HEAs
made from 3d transition elements. These powders have
a homogeneous chemical composition and are suitable
for various technological processes in powder metallurgy,
as well as for additive manufacturing [47]. However, gas-
atomized powders contain satellites, which limit their
compactness. Therefore, for obtaining powders with
a high degree of sphericity, the technology of centrifugal
atomization of a rotating electrode is used.

In the study [48], both EIGA (Electrode Inert Gas
Atomization, Fig. 4, a), and the PREP (Plasma Rotating
Electrode Process, Fig. 4, b) were used to produce RHEA
powders. The results demonstrated that the PREP method
produced powders with high sphericity and no satellite
particles, although the particle sizes were larger com-
pared to those obtained with EIGA. The average particle
sizes were 65.9 um for PREP and 51.8 um for EIGA.

In the study [26], self-propagating high-tempera-
ture synthesis (SHS) was used to obtain powders from
mechanically activated powder, resulting in a change in
the material’s phase composition. This approach expands
the potential for obtaining new properties in known HEA
chemical compositions.

Electrode —_ Rotating [ -
of |o | Inductor electrode B Melting zone
ol )o—1 Anod L s
Molten alloy —| DEI - | Plasma
| Gas jet [ . -
Spray nozzle ] e Engine ]:[tbé\ Cathode
wew +_ .. —
Vacuum — [} RRER S
Ar . \\ Molten droplets Vacuum — - \\ Molten droplets
—1H ‘ He+Ar — R
To filtration To filtration : >\ .
system system Sphe(rilcal
powders
Spherical
powders

Powder container

a

Powder container

Fig. 4. Schematic diagrams of EIGA (a) and PREP (b) systems
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A combination of magnesiothermy and SHS was
applied in the study [49]. The authors used a powder mix-
ture of WO,, Nb,O,, Ta,0, and MoO;, in combination
with pure magnesium powder for SHS. This approach
contributes to the expansion of the raw material base in
the production of RHEAs.

The expansion of synthesis methods allows for obtain-
ing powders with various chemical compositions, mor-
phologies, and sizes. This is crucial for the next techno-
logical cycle in powder metallurgy, namely consolidation
(compaction) processes.

Consolidation process

The most widely used compaction method is spark
plasma sintering (SPS). In the studies [50] and [51],
the maximum temperature of 1900 °C was achieved
under a pressure of 50 MPa. The maximum pressure for
SPS, 80 MPa, was applied in the study [52]. A key limi-
ting factor for the pressure is the use of graphite punches
in SPS.

The main advantage of the SPS method is the con-
trollable process speed, increased sample density, and
the retention of metastable structures due to high cooling
rates. However, SPS has limitations in producing comp-
lex-shaped and large-sized products.

Sintering by hot pressing (HP) is a widely used tech-
nology in powder metallurgy for producing products with
minimal residual porosity. The main difference between
HP and SPS is in the heating and cooling rates. Addi-
tionally, HP is preferable for manufacturing large parts in
industry [17; 19].

Cold isostatic pressing (CIP) and pressureless sin-
tering are common methods in powder metallurgy.
In the study [53], the maximum sintering tempera-
ture using a mixture of H, and Ar was 1400 °C. In
the study [54], the same sintering atmosphere was used,
but the maximum temperature reached 1450 °C. The data
obtained on the sintering process can be adapted for high-
throughput MIM (Metal Injection Moulding) techno-
logy [55; 56].

The method of hot extrusion is promising for pro-
ducing long products with high mechanical properties.
In the study [31], spherical powders in a stainless steel
container were subjected to hot extrusion at a tempera-
ture of 1150 °C (extrusion ratio of 7:1). The production
of long bars and wires by hot extrusion can be used both
for making rod structures and for additive manufacturing
processes, such as thermal spraying or wire arc additive
manufacturing.

Among the reviewed studies on HEA powder met-
allurgy since 2020, no methods for producing billets
by metal injection molding or hot isostatic pressing (HIP)
were presented [57]. However, these methods enable
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the manufacturing of complex-shaped samples with high
density and are promising for the production of parts from
HEA powders. Thus, in the coming years, these methods
are expected to be adapted for producing products for
high-temperature applications.

Phase composition

In the reviewed studies (see Table), X-ray diffraction
analysis of HEAs based on 3d transition metals prima-
rily revealed a single-phase FCC solid solution, while for
compositions based solely on refractory metals, a single-
phase BCC solid solution was identified. However, for
compositions containing both 3d transition metals and
refractory metals, X-ray analysis detected the presence
of two phases: FCC and BCC. Additionally, in some
cases, the presence of carbide, oxide, sigma, and inter-
metallic phases was observed, which positively affect
the high-temperature properties of the developed alloys.

Density

Density is a key factor for sintered samples, as it
allows for assessing the effectiveness of the consolida-
tion method.

Among the analyzed studies, the highest density
was achieved for the RHEAs (W, /Ta;.Mo Nb .),.Nig
(14.55 g/cm?®) [58] and equiatomic RHEA NbMoTaWRe
(14.36 g/cm?) [49], due to the presence of W, Ta, Nb, Mo,
and Re. The lowest density, 5.98 g/cm?, was obtained for
the HEA TiAlV, .CrMo [23]. Overall, chemical compo-
sitions containing Al have significantly lower densities.
To further reduce the density, oxides are introduced into
HEA compositions [32].

The density of powder samples is considered when
calculating specific strength, which allows for comparing
HEAs with different chemical compositions and densi-
ties.

It is important to note that density is also determined
by the level of residual porosity, which is highest for pres-
sureless sintering and lowest in the case of HP and SPS.

Mechanical properties at elevated temperatures

Only 20 % of the reviewed studies provide data on
the properties of powder HEAs at elevated temperatures.

The authors of the study [16] found that the RHEA
TaNbVTiAl , exhibits exceptional specific strength
both at room temperature (207.11 MPa-cm’/g) and
at high temperatures (88.37 MPa-cm?®/g at 900 °C and
16.03 MPa-cm?/g at 1200 °C), while maintaining accept-
able ductility. Such RHEAs have the potential for use at
temperatures exceeding 1200 °C. The high mechanical
properties are determined by the homogeneous micro-
structure and solid solution strengthening.
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In the study [17], a comparison of tensile test results
at room temperature and at 900 °C showed that deforma-
tion increased 5.6 times, and the yield strength decreased
fourfold. According to the authors, grain boundary
strengthening was the dominant mechanism at elevated
temperatures, where carbide particles made a significant
contribution to increasing yield strength through disloca-
tion and Orowan strengthening.

In the study [18], nanoindentation showed that in-
creasing the temperature to 400 °C resulted in only
a 10 % reduction in hardness.

In the study [21], the hot deformation characteristics
of ultrafine-grained RHEA MoNbTaTiV were investi-
gated using isothermal compression tests in the tempera-
ture range of 1100 to 1300 °C and strain rates from 0.0005
to 0.5 s7!. It was found that at high temperature and low
strain rate, the main deformation mechanism becomes
grain boundary sliding, which is somewhat suppressed by
grain growth and ultrafine precipitated phases distributed
along the grain boundaries.

In the study [22], it was noted that the high strength
of the NbMoTaWV alloy at elevated temperatures is pri-
marily due to the presence of a secondary phase, which
prevents grain boundary sliding. However, at elevated
temperatures, the alloy became less ductile, likely due
to the presence of the secondary phase, which leads
to crack formation along the grain boundaries. At room
temperature, the sintered NbMoTaWV demonstrated
higher compressive strength and ductility compared
to the corresponding cast HEA. The significant increase
in strength is associated with the precipitation of the
(Ta, V)O, phase and grain boundary strengthening of the
BCC matrix.

In the study [25], a new super-strong RHEA NbTaTiV,
oxide-dispersion strengthened with 0.35 wt. % Al,O,,
was produced. The dual-phase material demonstrated
a high yield strength (2075 MPa) and compressive ducti-
lity (15 %), maintaining high strength across a wide tem-
perature range (25— 1000 °C). The super-high strength
of the dual-phase RHEA was mainly attributed to dis-
persion strengthening due to the high fraction of submi-
cron Ti-(O, N) particles and solid solution strengthening.
The alloy’s performance can be significantly improved
through oxide strengthening, opening new prospects for
developing high-performance RHEAs.

High-temperature tests conducted in all the published
studies aimed to evaluate the static strength of materi-
als at elevated temperatures (see Table), but for practi-
cal application, an assessment of the reliability of such
materials will be required. Therefore, future studies
should evaluate fracture toughness, creep resistance,
durability, etc.

Oxidation resistance and thermal stability

In 15 % of the reviewed studies, data on thermal sta-
bility and/or oxidation resistance were provided.

A key feature of RHEAs is the high-temperature sta-
bility of the ultrafine-grained structure, obtained through
mechanical alloying followed by SPS. The high recrys-
tallization temperature of RHEAs ensures the retention
of the nanostructures formed during the preparation
of powder mixtures. Therefore, RHEAs exhibit higher
thermal stability compared to HEAs based on 3d ele-
ments.

The introduction of active elements Al and Cr into
RHEA compositions promotes the formation of oxide
films, which enhance heat resistance [20; 30].

[ CONCLUSIONS AND FUTURE PROSPECTS

This review has examined new and traditional
approaches used in the production of high-entropy alloys
(HEAs) for high-temperature applications. The primary
goal of solid-state methods for producing HEAs from
refractory elements is to create cost-effective components
with precise geometries and properties that are difficult
or impossible to achieve using gas-phase or liquid-phase
methods.

Recent research in powder metallurgy shows the use
of oxides and hydrides for powder production, signifi-
cantly expanding the raw material base for HEA metal-
lurgy.

Various approaches are used to produce powder mix-
tures, including mechanical alloying, SHS (self-propa-
gating high-temperature synthesis), hydride formation,
metallothermy, agglomeration, spheroidization, gas
atomization, and plasma atomization of a centrifugally
rotating electrode.

An analysis of powder sintering methods indicates
that the most commonly used method is spark plasma
sintering (SPS). However, this method has known limita-
tions regarding the shape and size of products. Therefore,
the study of free sintering processes is more important
for mass production. In addition, to reduce the porosity
of sintered powder samples, hot isostatic pressing (HIP),
which is actively used in additive manufacturing for criti-
cal products, should be applied.

The production of long bars and wires from HEAs
by hot extrusion of powders can be used for making rod
structures as well as for additive manufacturing pro-
cesses, such as thermal spraying or wire arc additive
manufacturing.

An analysis of the chemical composition of high-
entropy alloys shows that HEAs based on 3d transition
elements are suitable for temperatures up to 1000 °C,
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while refractory HEAs (RHEAs) are used at higher tem-
peratures. The addition of aluminum is aimed at reduc-
ing the density of RHEAs and increasing oxidation resis-
tance.

One of the promising methods for improving strength at
high temperatures is oxide dispersion strengthening. How-
ever, in some cases, nanoparticles chemically interact with
the matrix, altering the chemical composition of the dis-
persed particles. Therefore, the selection of strengthening
nanoscale powders requires prior analysis.

The high thermal stability of RHEAs and the reten-
tion of nanoscale grains at temperatures above 1000 °C
are determined by the high recrystallisation temperature.

The results of this review confirm that HEAs have
potential for use in high-temperature applications.
The mechanical properties of sintered RHEA samples are
superior to those of samples with similar chemical com-
positions obtained by liquid-phase methods. However,
further research and development are required to improve
the oxidation resistance and mechanical properties
of powder RHEAS at the desired temperatures.

A key finding from the analysis is the identification
of a limited range of methods for evaluating high-tem-
perature properties (such as compressive strength, tensile
strength, and nano-hardness). This restricts consumers’
ability to fully assess the feasibility of new alloys and
production methods for practical applications. There-
fore, it is essential to broaden the evaluation approaches
to include a wider spectrum of performance character-
istics, such as fracture toughness, heat resistance, wear
resistance, fatigue strength, and overall durability.

Thus, future research should focus on:

— determining fatigue properties and the durability
of powder products to ensure their reliability in real engi-
neering applications;

— manufacturing large parts with complex shapes;

—reducing porosity without significantly increasing
cost;

— developing low-temperature deformation methods;

— creating environmentally friendly and highly accu-
rate production technologies.

When planning new research, it is important to focus
on scalability, cost-effectiveness, and the practical appli-
cation of powder synthesis and consolidation methods
to enable their broader adoption in real-world engineer-
ing projects.
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