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Abstract. Currently, the use of additive technologies in industry is becoming more promising. The intensification of development of 3D technologies
leads to the need for a more thorough study of the structure and properties of metals obtained by this method. In this paper, the effect of heat treat-
ment on structure of the metal deposited by Wire Arc Additive Manufacturing (WAAM) is considered. The paper describes the effect of quenching
at various temperatures and annealing on the structure of austenitic steel 07Cr25Nil13. As a result of the work, it was found that during metal deposi-
tion, crystallization occurs according to the FA type with the formation of a coarse dendritic structure with mainly skeletal and vermicular morphology,
consisting of 8- and o-phases. It is noted that quenching at 1070 °C practically does not change the metal structure. Despite the fact that quenching
at elevated temperatures (1100 °C) leads to partial dissolution and spheroidization of the dendrites released during surfacing, there are no cardinal
structural changes. The most complete dissolution of the dendritic component occurs during quenching at 1150 °C. The structure after this procedure
is predominantly austenitic, remains of the dendritic component are represented by small spherical inclusions. The steel structure after annealing
(1150 °C) practically does not differ from the structure obtained after quenching at the same temperature. A significant increase in grain size, typical
for austenitic steels, is not observed in this case. Based on the structure obtained after heat treatment, the most promising treatment options for future
physico-mechanical properties are quenching and annealing at 1150 °C.
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AnHomayus. B Hacrosiuee Bpems Bce 0ojiee MepCreKTHBHBIM SBISIETCSl IPUMEHEHUE aAJUTHBHBIX TEXHOJIOTMH B NMPOMBILICHHOCTH. VHTEH-
cudukanys pa3BuTHs 3D-TEXHOIOTHII MPUBOANUT K HEOOXOJMMOCTH 0oJiee TIIATEILHOTO U3YyYeHHs CTPYKTYPhl M CBOWCTB METAJUIOB, ITOJIY-
4JaeMbIX JaHHBIM MeTo0M. B pabore paccmarpuBaetcst Biusinue Tepmoodpaborku (TO) Ha CTPYKTYypy HAILIaBIsSEMOTO METOIOM 3JIEKTPOIY-
roBoi HatutaBku (WAAM) Mertamia. V3y4eHo BIMsHUE 3aKAJIKH IIPU PA3JIMYHBIX TEMIIepaTrypax M OT)KUTa Ha CTPYKTYpPy ayCTEHUTHOM CTalln
07X25H13. YcraHOBICHO, YTO MPH HAIUIABKE METallla MPOMCXOAUT KpHucTaum3anus no tuny DA ¢ oOpa3oBaHueM TpyOOi NEHIPHUTHOM
CTPYKTYPBI CO CKEJICTHOH M BEPMHUKYISIPHOI Mopdoiorueit n cocrosmiei n3 o- u o-¢pas. 3akanka npu temneparype 1070 °C npaktuuecku
HE M3MEHseT CTPYKTypy Mertasia. [Ipu mosbimeHHbix Temneparypax (1100 °C) 3akanka NpUBOAMT K YaCTHYHOMY PACTBOPEHHIO U chepo-
WMJU3AIUK BBIICIMBIINXCS IIPU HAIUIABKE JACHIPUTOB, OJJHAKO KapAMHAIBHBIX CTPYKTYPHBIX M3MECHEHHUI He mpoucxonuT. Hanbonee nmonHoe
pacTBOpeHHE JEHAPUTHOMN COCTABISAIOMIEH MPOUCXOAUT BO BpeMs 3akanku mpu temmnepatype 1150 °C. Ctpykrypa nocne gannoit TO npeumy-
LIECTBCHHO ayCTCHHWTHAs, OCTATKH JCHIPUTHOM COCTABISIONICH IPEACTABICHBI MEIKUMH C(HEepruecKUMHU BKIIOYeHUAMU. CTPYKTypa CTain
nocie orxura (1150 °C) npakTHYeCcKH He OTIIMYAETCs OT IMOIy4aeMO MOCIe 3aKaIKH IPU TOH K€ TeMIepaType. 3HaUUTEeIbHOTO YBEITHYCHUS
pasmepa 3epeH, XapaKTepHOro sl ayCTEHUTHBIX CTallel, B JaHHOM Cilyyae He HaOmonaeTcs. Mcxons u3 cTpykrypsl, nonyuaemoii nocie TO,
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- INTRODUCTION

Currently, austenitic steels are widely used in
the chemical, oil, and food industries, as well as in
the production of medical and nuclear power plant equip-
ment [1]. A number of industries in the modern world can
hardly exist without austenitic corrosion-resistant steels.
This type of material possesses unique properties, such
as high corrosion resistance in acid and alkaline envi-
ronments of varying corrosive strength, as well as para-
magnetism. The combination of physical and mechanical
properties is achieved not only through alloying with sig-
nificant amounts of chromium, nickel, magnesium, and
other elements but also through maintaining a homoge-
neous austenitic structure throughout the product’s entire
service life [2].

Currently, additive technologies are becoming increa-
singly promising for industry as they reduce the total cost
of products, especially in single and small batch produc-
tion. The rapid development of 3D printing technologies
necessitates a thorough investigation of the mechanical
properties, structure, and chemical composition of met-
als produced by these methods. To date, the main meth-
ods of metal 3D printing are layer-by-layer powder
fusion (selective laser sintering, SLM), laser powder
deposition (laser engineered net shaping, LENS/direct
metal deposition, DMD), and electric arc deposition (wire
arc additive manufacturing, WAAM) [3]. WAAM 3D
printing, which we used for this study, is the most pro-
ductive and technologically simple [4; 5].

The advantages of additive manufacturing methods
are as follows:

—the process of obtaining products can be fully
automatized;

— when products are manufactured of expensive mate-
rials, such as titanium and nickel alloys, the material con-
sumption is considerably reduced;

—small batch production, unprofitable when using
traditional production methods, becomes cost-effi-
cient [6 — 8].

SLM technology enables the manufacture of complex
products by laser melting of metal powder using CAD
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models. At the powder melting point, the energy den-
sity is higher compared to other electric arc processes
(e.g., welding), but lower than in the case of laser expo-
sure [9]. The main problem of parts produced by the SLM
method is relatively high surface roughness, which
reduces fatigue resistance by increasing stress concentra-
tion on the sample surface [10].

Laser powder deposition is the process of overlay
welding performed by fusing the powdered material layer
onto the substrate. The laser beam creates a molten bath
into which the powdered metal is introduced. The metal
melts and solidifies in the bath to form metallic bonds
with the substrate. During the surfacing process, the pow-
dered metal is automatically fed from the feed system
to the substrate, which is lowered to the height equal
to the thickness of the layer to be deposited. However, it
should be noted that the laser deposition method does not
ensure reproducibility of the chemical composition and
mechanical properties of the final products [11; 12],
which is a significant disadvantage of this technology.

WAAM technology is a relatively new additive growth
method that emerged in the 1990s. It includes depositing
a common welding wire, widely available commercially,
onto the substrate, resulting in a finished part. Com-
pared to conventional manufacturing, WAAM can reduce
manufacturing time by 40 — 60 % and post-processing
time by 15— 20 %, depending on the size of the part.
For example, the use of this technology for manufactu-
ring airplane landing gear stiffeners results in about 78 %
raw material savings compared to conventional produc-
tion [13]. Metals with good weldability can potentially
be used for the WAAM process, and so far, researchers
have successfully applied this method to fabricate parts
from Ti [13], Al [14], steel [15], and Ni [16] based alloys.

In the additive growth process, the surfaced metal is
in a liquid state and is subsequently subjected to multiple
cycles of high-temperature heating, including to tem-
peratures above critical. As a result, the microstructure
of the surfaced metal differs from that of metal pro-
duced by conventional technologies, and consequently,
the physicochemical and strength properties of the metal
may also differ from those of rolled material.
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Table 1. Chemical composition of the studied material

Tabauya 1. XuMHYeCKHii COCTAB HCCJIETOBAHHOTO MaTepuaJsia

Content of chemical elements, %
Material
C Si Mn Cr Ni Mo Ti S P
GOST 2246 | <0.09 | 0.5—-1.0 | 1.0-2.0 | 23.0—-26.0 | 12.0 — 14.0 | not regulated | not regulated | <0.018 | <0.025
ER309LSI | 0.016 0.7 1.9 23.3 13.7 0.1 0 0.004 | 0.019

An increasing number of foreign studies are investi-
gating the application of additive technologies in industry.
However, in Russia, these methods are developing locally
and are not yet widespread. In addition to reducing
the cost of small-batch products from austenitic steels,
which are currently quite popular, additive technologies
can also contribute to the advancement of Russian sci-
ence.

The objective of this study is to explore the effect
of heat treatment modes on the structure of austenitic
steel 07Cr25Nil3 obtained by additive growth using
the WAAM method.

[l MATERIALS AND METHODS

The research was conducted using metastable auste-
nitic steel 07Cr25Nil3 obtained by the WAAM method.
The samples for investigating the deposited metal were
produced on a specialized bench for additive arc sur-
facing [17]. Surfacing was performed with the follow-
ing parameters: /=120 A; U=24V; v =350 mm/min.
A shielding gas mixture of 98 % Ar and 2 % CO, was
used. The samples for metallographic studies were cut
from the obtained blanks using waterjet cutting followed
by milling. ER309LSI welding wire was used as the ini-
tial material for surfacing. The chemical composi-
tion of the wire is presented Table 1.

The metal surfacing process can result in the loss
of'alloying elements. The chemical composition of the sur-
faced metal was determined using a Foundry-Master opti-
cal emission analyzer.

The structural affiliation of the deposited mate-
rial to the austenitic class was derived from the Scheff-

Table 2. Modes of the samples heat treatment

Tabauya 2. PexkumMbl TEPMOOOPAGOTKH 00pa31oB

Mode Heating Holding time, Cooling
number | temperature, °C min medium
1 1070 30 Air
2 1100 60 Air
3 1150 60 Air
4 1150 60 Furnace

ler diagram. According to the literature data [15 — 20],
the phase composition obtained after surfacing depends
on the Cr, and Nisq ratio and can be specified from
the Scheffler diagram.

We know from the literature sources [18 — 23] that
phase transformations during crystallization and the final
phase composition depend on the Crcq/ Ni,, ratio and are
divided into the following types:

cA(L25):L—-(L+7y)—v;

*AF (1.25<1,48): L—(L+y)—(L+y+38)—(y+9);

*FA(1.48<1,95): L—(L+ 8)—(L+5+y)—-(B+v);

*F(>195):L-(L+8)—-(6+7).

These equivalents were determined using the follo-
wing formulas

Cr,,=Cr+Mo+ 1.5Si + 0.5Nb + 2Ti; H

Ni,, =Ni +30C + 0.5Mn. 2)

Metallographic studies were performed in cross sec-
tion relative to the surfacing direction at magnifications
of 100 and 200, and the milled surface of the samples
was also examined. The metallographic sections were
prepared following the standard procedure — the samples
were sanded mechanically using the sandpaper of differ-
ent grits and polished with pastes. The solution consisting
of 5 cm® HNO,, 50 cm® HCl and 50 cm® H,O was used as
a chemical etching reagent.

To investigate the impact of heat treatment on the struc-
ture of the samples, we performed quenching in three
modes followed by metal annealing. The heat treatment
parameters are presented in Table 2.

[ RESULTS AND DISCUSSION

The study of the chemical composition of the surfaced
metal revealed the decrease in the content of all alloy-
ing elements (AE), except silicon. The diminishing AE
concentration is typical for metal welding and smelting
processes due to their losses. The increased wire content
in the surfaced metal compared to the original wire can
be attributed to the heterogeneity of its chemical compo-
sition along its length. It should be noted that as the steel

305



N3BECTUA BY30B. YEPHASA METAJIJIYPTUA. 2024;67(3):303-310.
Anocos M.C., CopokuHa C.A. u dp. Bnusinue TepMo06paboTKH HAa CTPYKTYPY aycTeHUTHOM cTanu 07X25H13, nosryueHHON METO/IOM ...

Table 3. Chemical composition of the surfaced metal

Ta6auya 3. XuMuvecKHii cOCTaB HAIJIABJIEHHOI0 MeTaJL1a

) Content of chemical elements, %
Material ; : .
C Si Mn Cr Ni Mo Ti S 1P
ER309LSI 0.016 | 0.700 | 1.90 23.3 13.7 | 0.100 0.004 | 0.0190
Surfaced metal | 0.018 | 0.820 | 1.75 23.2 13.4 | 0.036 0.005 | 0.0114

chemical composition changed after surfacing, the AE
content variations did not exceed the permissible limit (in
accordance with GOST 2246 — 70). The final composi-
tion of the surfaced metal is presented in Table 3.

Chromium and nickel equivalents are calculated
by the formulas (1), (2): Cr,, —23.2578; Nieq— 14.815.
The Clreq/Nieq ratio is 1.57, hence, in this case the trans-
formations during crystallization can be described
by the FA mode (the Creq/ Nieq ratio exceeds 1.48).
The approximate ferrite content in the surfaced metal can
be determined from the Scheffler diagram (Fig. 1).

Based on the above diagram, the approximate content
of d-ferrite in the metal after surfacing is about 7.5 %,
which is consistent with the theoretical data [24].

We studied the cross direction relative to the metal
surfacing axis based on the microstructural analysis
of the samples before and after the heat treatment. Fig. 2
shows the structure of the surfaced metal prior to heat
treatment.

The dendrites are oriented normal to the surface
of the laser track due to the direction of heat removal.
The dendrites located deep within the surfaced metal
have a more developed boundary structure. The dendritic
structure refinement on the laser track surface can be
put down to the supply of additional thermal energy as
the next metal layer is deposited. In general, the struc-

0 % ferrite

Austenite

Martensite

Ferrite

16 20 24 28 32 36 Cr,

Fig. 1. Location of steel 07Cr25Nil3 on the Scheffler diagram

Puc. 1. Pacnionoxenue cramu 07X25H13 na quarpamme Hleddnepa
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ture of the surfaced metal is similar to the microstructure
resulting from the crystallization of austenitic steel.

It was noted in [25] that the dendrites formed
during surfacing may include o-ferrite and o-phase.
Fig. 3, b shows that d-ferrite has mainly skeletal and
vermicular morphology. Surfacing of AISI 316L [25]
and AISI 316 [26] steel resulted in a similar structure.
The interdendritic space is filled with y-phase (austenite).

Austenitization according to mode / (1070 °C,
30 min) did not result in visible changes in the grain
structure, which is indicative of insufficient holding time

Fig. 2. Structure of the sample after surfacing:
%100 (a); x200 (b)

Puc. 2. Ctpykrypa o0pa3La 11ocjie HariaBKH:
%100 (a); x200 (b)
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or temperature or both during austenitization (Fig. 3).
It should be noted that the overall etchability of the samp-
les increased.

The grain boundaries only begin to emerge in the struc-
ture after heat treatment according to mode /, which is
also indicative of insufficient holding at the austenitiza-
tion temperature (Fig. 3). The dendritic structure does not
decrease, which indirectly shows that the content of -
and o-phases did not reduce. The &-ferrite morphology
does not significantly change.

We performed quenching using mode 2 (1100 °C,
60 min) to study the effect of increased austenitiza-
tion temperature and holding time. Fig. 4 shows the sam-
ple microstructure in the direction transverse to the sur-
facing axis after heat treatment according to mode 2.
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In the micrographs of the sample after austenitiza-
tion at 1100 °C, the grains formed can be seen more
clearly. The dendrite size generally decreases com-
pared to the microstructure after surfacing and treatment
according to mode /. This effect indicates more complete
diffusion processes during austenitization. Spheroidiza-
tion of dendritic components is observed, their gene-
ral orientation remaining the same. The percentage
of d-ferrite and o-phase should significantly decrease
after this treatment.

After quenching according to mode 3 (1150 °C,
60 min), grain boundaries and austenite twins are clearly
visible in the metal structure (Fig. 5). The dendritic struc-
ture dissolved almost completely; the dendrites that failed
to do so are represented by small spheroidal inclusions.
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Fig. 3. Structure of the sample after quenching according to mode /:
%100 (a); x200 (b)

Puc. 3. CtpykTypa 00pasia 1nocie 3akajiku 110 pexumy /:
%100 (a); x200 (b)

Fig. 4. Structure of the sample after quenching according to mode 2:
%100 (a); x200 (b)

Puc. 4. Ctpykrypa 006pasiia Iocie 3aKaJKy 10 PexuMy 2:
%100 (a); x200 (b)
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Fig. 5. Structure of the sample after quenching according to mode 3:
x100 (a); x200 (b)

Puc. 5. CtpykTypa 0o0pasia rnocje 3aKajiki 1o pexumMy 3:
%100 (a); 200 (b)

Fig. 6. Structure of the sample after annealing according to mode 4:
x100 (a); x200 (b)

Puc. 6. CtpykTypa 00pa3siia 1mocje 0TKUra 1o pexumMy 4:
%100 (a); 200 (b)

Mode 4 (1150 °C, 60 min) enables more complete dis-
solution of the remaining dendrites because at such metal
temperatures, the diffusion is active for a longer time.
The austenitic structure of the metal with characteristic
twins is clearly visible (Fig. 6).

It should be noted that after annealing according

to mode 4, there is no significant grain increase compared
to quenching at the same temperature and holding time.

- CONCLUSIONS

It is found that after WAAM surfacing, steel 07Cr25Nil13
forms a rough dendritic structure, which may consist
of d-ferrite and o-phase. The post-deposition structure
features O-ferrite of skeletal and vermicular morpho-
logy, with the interdendritic space filled with y-phase.
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The phase composition of the deposited material is con-
sistent with that determined from the Scheffler diagram.

Austenitization at 1070 °C with a 30 min holding time
practically does not change the structure of the deposited
metal. After aging the samples at 1100 °C for 60 min,
we can clearly see the formation of austenitic grains and
a reduction in dendrite size. Thus, structural-phase trans-
formations in steel 07Cr25Nil3 require heating to tem-
peratures above 1100 °C during heat treatment.

Quenching according to mode 3 (1150 °C, 60 min)
results in almost complete dissolution of dendrites.
The remaining undissolved dendrites appear as small
spheroidized particles.

The metal structure after heat treatment according
to mode 4 (1150 °C, 60 min, furnace cooling) is prac-
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tically the same as that of the metal quenched from
the same temperature. A significant increase in grain size,
typical for austenitic steels, is not observed in this case.

In terms of potential physical and mechanical proper-

ties, heat treatment modes 3 and 4 proved to be the most
favorable.
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