УДК: 669.05: 536.2: 662.613.128

А.М. Гришин, В.К. Симонов, И.С. Щеглова

Национальная металлургическая академия Украины

О НЕСООТВЕТСТВИИ КИНЕТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ ТЕРМОДИНАМИЧЕСКИМ ПРЕДПОСЫЛКАМ РЕАКЦИЙ ГАЗИФИКАЦИИ УГЛЕРОДА Н,О И СО,

Аннотация. Представлены результаты исследований газификации углеродистых материалов CO_2 , H_2O и их смесью. Установлены скоростные преимущества паровой газификации перед углекислотной. Такой результат, не согласующийся с термодинамическими возможностями процесса выше \sim 1073 K, объяснен закономерностями диффузионного газообмена и особенностями адсорбционно-химических взаимодействий в ходе указанных гетерогенных реакций. Установлено, что скорость газификации C_{18} смесью $CO_2 - H_2O$ превосходит сумму скоростей раздельно проведенных реакций. Эта неаддитивность результатов определяется дополнительным вовлечением окислительного потенциала CO_2 в газификацию C_{18} через посредничество образующегося водорода.

Ключевые слова: углерод, водяной пар, диоксид углерода, газификация, скорость, термодинамические предпосылки, диффузионный газообмен, адсорбционно-химические взаимодействия.

ABOUT DISPARITY OF KINETIC CONFORMITIES TO LAW TO THERMODYNAMICS PRECONDITIONS OF REACTIONS OF CARBON GASIFICATION BY H,O AND CO,

Abstract. Results of researches of carbon materials gasification by CO_2 , H_2O and their mixture are presented Speed advantages of steam gasification are set in comparison with carbon-dioxide one. Such result is not concordant with thermodynamics possibilities of process at temperatures higher ~1073 K and can be explained by conformities to law of diffusive interchange of gases and features of adsorption-chemical co-operations during indicated heterogeneous reactions. It is set that speed of C_{solid} – gasification by mixture of CO_2 – H_2O excels the sum of speeds of reactions separately carried out. This nonadditivity of results is determined by additional engaging of CO_2 – oxidizing potential in C_{solid} – gasification through mediation of appearing hydrogen.

Keywords: carbon, water vapor, carbon dioxide, gasification rate thermodynamic prerequisites diffusion gas adsorption and chemical interactions.

Окислительная газификация углеродистых материалов с участием ${\rm CO_2}$, ${\rm H_2O}$ и их смесей не только открывает возможность получения энергетических и технологических газов. Она служит неотьемлемым, а зачастую и ведущим звеном в процессах извлечения ряда металлов из руд, в частности при углетермическом и комплексном (газово-углетермическом) восстановлении железа, хрома и др. Этим определяется интерес к изучению указанного процесса. Однако о скоростном соотношении реакций углекислотной и паровой газификации ${\rm C_{rp}}$ мнение неоднозначно [1, 2].

Результаты прежних [3, 4] и настоящих исследований авторов однозначно свидетельствуют в пользу последней из вышеуказанных реакций. Это иллюстрируется экспериментальными данными, графически представленными на рис. 1, a. Дополнительным аргументом могут служить результаты опытов, показавших, что частичная замена CO_2 водяным паром не замедляет, а существенно интенсифицирует процесс (рис. 1, δ). Однако нельзя не отметить факт несоответствия установленных кинетических закономерностей термодинамическим предпосылкам газификации $C_{_{TB}}$ диоксидом углерода и водяным паром. Действительно, чуть выше 1073 К преимущество в сродстве к кислороду переходит от CO к H_2 . Изменение свободной энергии в реакциях

$$C + CO_2 = 2CO (1)$$

$$C + H_2O = H_2 + CO^*$$
 (2)

указывает на предпочтительность первой из них. Термодинамические соотношения, полученные на базе сведений [5], иллюстрируются рис. 2.

Устранить противоречия между термодинамическими предпосылками и экспериментальными данными позволяет учет особенностей течения гетерогенных реакций (1) и (2). Прежде всего следует иметь ввиду, что коэффициент свободной диффузии $D_{\rm H_2/H_2O}$ в несколько раз превосходит $D_{\rm CO/CO_2}$ [6]. Поэтому внешний, меж- и внутричастичный газообмен в достаточно крупных порах в системе Н₂-H₂O протекает быстрее, чем в системе СО-СО2. Преимущества более легких газов (Н2, Н2О) сохраняются в смесях сложного состава с участием моно- и диоксида углерода. В тонких порах частиц шихты, на которые распространяются законы кнудсеновского молекулярного течения, каждый из газов перемещается независимо от других. При этом коэффициент диффузии D_{ν} обратно пропорционален корню квадратному из молекулярной массы газа. Следовательно при

^{*} Выше 1173 К равновесная концентрация СО₂ пренебрежимо мала.

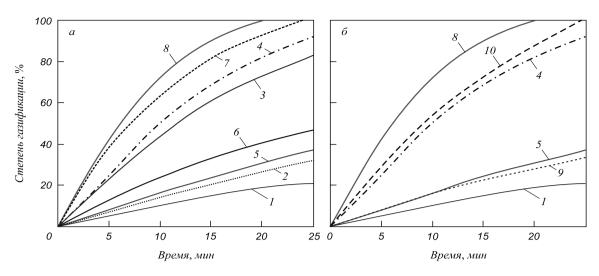


Рис.1. Кинетика газификации различных углеродистых материалов при 1273 К: $a-\mathrm{CO}_2$ (I-4), $\mathrm{H}_2\mathrm{O}$ (5-8); $\delta-$ диоксидом углерода (I,4) водяным паром (5,8) и смесью 70 % CO_2+30 % $\mathrm{H}_2\mathrm{O}$ (9,10). I,5,9- графит; 2,6- металлургический кокс; 3,7- пиролигнин; 4,8,10- древесный уголь

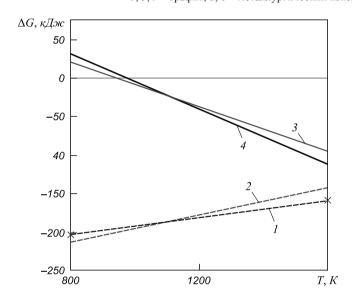


Рис. 2. Температурная зависимость изменения свободной энергии $(\Delta G_{\rm O}) \text{ в реакциях}:$ $I-H_2+1/2O_2=H_2O; \ 2-CO+1/2O_2=CO_2;$ $3-C+H_2O=CO+H_2; \ 4-C+CO_2=2CO$

любом механизме диффузии транспорт $H_2 - H_2 O$ осуществляется наиболее быстро.

Подробного рассмотрения требуют особенности течения адсорбционно-химических взаимодействий СО и Н₂О с твердым углеродистым материалом. Первичным актом этих взаимодействий является адсорбция молекул окислителей на поверхности $C_{_{\mathrm{TR}}}$. Развитие ее при температурах, исключающих химическое реагирование, изучено авторами газохроматографическим методом. Экспериментальные данные, как показала проверка, наиболее адекватно описываются уравнением изотермы Ленгмюра $\Gamma_i = a_i P/(1 + a_i P)$ с коэффициентом корреляции $y \ge 0.9$, где Γ_i – значение адсорбции газов на поверхности углеродистых материалов; L_i – коэффициент адсорбции газов; P – парциальное давление газа. Результаты измерений с дифференциацией на обратимую адсорбцию $\Gamma^{\text{об}}$ и необратимую $\Gamma^{\text{н}}$ (или хемосорбцию) приведены в табл. 1.

Из сопоставления экспериментальных данных следует, что суммарная адсорбция ($\Gamma^{of} + \Gamma^{H}$) и необратимая

Таблица 1

Dan waren to mark to a woom from CO	·· II O ·· · · · · · · · · · · · · · · ·	
Различные виды адсорбции СО,	и н.О на поверхности графита і	a hoebechoro vina iida 5/5 K
	,	- ~p

р с Окисли-		Характер	Предельное значение		Адсорбция Γ^{i} . 10^{6} моль/г при P , к Π а					
Вил С.	адсорбции $\Gamma_{\infty} \cdot 1$ моль/г	адсорбции $\Gamma_{_\infty}$ · 10^6 , моль/г	10		20	30	40	50	60	
CO ₂	необр.	0,0297	0,3578	0,0078	0,0124	0,0154	0,0175	0,0191	0,020	
	обрат.	3,311	0,5847	1,221	1,785	2,108	2,319	2,467	2,576	
Графит Н ₂ О	необр.	0,1038	3,010	0,078	0,089	0,093	0,096	0,097	0,098	
	обрат.	3,323	2,815	2,45	2,82	2,97	3,05	3,10	3,14	
	CO	необр.	6,083	2,122	4,13	4,92	5,26	5,44	5,56	5,64
Древесный СО ₂	обрат.	53,107	2,061	35,76	42,74	45,71	47,36	48,41	49,13	
уголь H ₂ O	необр.	16,12	1,049	8,304	10,984	12,308	13,098	13,622	13,996	
	обрат.	89,18	3,061	67,219	76,658	80,422	82,446	83,710	84,575	

доля ее существенно выше в атмосфере водяного пара. Хемосорбция молекул CO_2 и $\mathrm{H}_2\mathrm{O}$ при весьма невысокой температуре исследований должна быть связана с ярко выраженными акцепторными свойствами этих молекул, проявлению которых благоприятствует наличие коллективизированных π -электронов в кристаллической решетке $\mathrm{C}_{\mathrm{тв}}$. Заметим, что большее сродство к электрону молекул $\mathrm{H}_2\mathrm{O}$ ранее зафиксировано авторами при определении проводимости $\mathrm{Fe}_2\mathrm{O}_3$ - α (n — полупроводника) в атмосфере водяного пара и диоксида углерода [7]. Результаты этих исследований приведены в табл. 2.

Закономерности адсорбционно-химических взаимодействий в ходе паровой и углекислотной газификации $C_{_{TB}}$ были изучены путем измерения скорости поверхностных реакций. Эти измерения выполнены методом импульсной газовой хроматографии, что позволило исключить влияние диффузионного газообмена на результаты исследования. Полученные данные отражены в табл. 3.

Представленные результаты исследований свидетельствуют о значительных преимуществах паровой газификации $C_{_{TB}}$ в сравнении с углекислотной. Эти преимущества возрастают с подъемом температуры. Таким образом, более высокие скорости реакции (2) относительно реакции (1) определяются совокупностью диффузионных и адсорбционно-химических процессов. Механизм реализации последних можно описать, опираясь на представления, развитые авторами [8, 9].

Таблица 2

Температурная зависимость электропроводности $\mathrm{Fe_2O_3}\text{--}\alpha$ в атмосфере различных газов

Атмосфера	σ , МОм $^{-1} \cdot$ м $^{-1} \cdot 10^{-2}$ при температуре, К						
	573	593	613	633	653	673	693
Ar	1,19	2,13	4,08	5,24	7,81	12,34	15,03
$Ar + 4 \% H_2O$	1,01	1,82	2,86	4,35	6,59	11,30	14,10
$Ar + 4 \% CO_2$	1,12	1,85	2,94	4,55	6,87	11,63	14,72

Таблица 3

Скорость поверхностных реакций взаимодействия ${\rm CO_2}$ и ${\rm H_2O}$ с ${\rm C_{_{TB}}}$

Вид С	Темпера- тура, К	Реакцион- ный газ	Скорость газификации $C_{_{\rm TB}}$, %/с
Графит -	1223	CO_2	0,044
		H ₂ O	0,110
	1273	CO ₂	0,060
		H ₂ O	0,206
Дре- весный - уголь	1222	CO_2	0,308
	1223	H ₂ O	0,605
	1272	CO_2	0,431
	1273	H ₂ O	1,460

Схема такого механизма выглядит следующим образом. Обе гетерогенные реакции, (1) и (2), начинаются с образования поверхностных адсорбционных комплексов:

$$C_n + CO_2 = C_n(O)_{anc}(CO)_{anc}, (3)$$

$$C_n + H_2O = C_n(O)_{anc}(H_2)_{anc}.$$
 (4)

Как было отмечено выше, образованию водородуглеродных комплексов принадлежат определенные преимущества. Они возрастают за счет большого различия в энергии химических связей в молекулах H_2O и CO_2 . Она составляет 467,60 и 707,79 кДж/моль в связях O-H и C=O соответственно [10]. Следующий этап газификации $C_{_{TB}}$ включает десорбцию CO и H_2 , что не связано с разрушением структуры углеродистого материала и не требует больших энергетических затрат:

$$C_n(O)_{anc}(CO)_{anc} = C_n(O)_{anc} + CO; (5)$$

$$C_n(O)_{anc}(H_2)_{anc} = C_n(O)_{anc} + H_2.$$
 (6)

Заключительный этап обеих рассматриваемых реакций поставлен в идентичные условия — он требует существенных энергетических затрат, так как связан с изъятием атомов С из кристаллической решетки углерода:

$$C_n(O)_{anc} = C_{n-1} + CO.$$
 (7)

Следовательно, повышенные скорости адсорбционно-химических взаимодействий в реакции (2) связаны главным образом с условиями развития первого этапа окислительной газификации $C_{_{TP}}$.

Существенный интерес представляет изучение особенностей газификации углеродистых материалов с участием смесей ${\rm CO_2-H_2O}$. Результаты некоторых исследований, выполненных авторами, отражены на рис. 3.

Сопоставление экспериментальных данных свидетельствует о том, что сумма скоростей газификации углерода CO_2 и $\mathrm{H}_2\mathrm{O}$, осуществленной каждым из окислителей самостоятельно, уступает скорости процесса в потоке смеси этих газов. В основе такой неаддитивности результатов лежат следующие причины.

Выше ~ 1073 К сродство H_2 к кислороду больше, чем у СО (см. рис. 2). В совокупности с высокой концентрацией диоксида углерода в газовой фазе это обеспечивает течение реакции

$$CO_2 + H_2 = CO + H_2O.$$
 (8)

Регенерируемый водяной пар интенсифицирует газификацию $C_{_{TB}}$, обеспечивая неаддитивность результатов процесса с раздельной и совместной подачей в реактор CO_2 и H_2O . В газификации углерода его диоксид участвует не только прямо, но и косвенно, так как окислительный потенциал CO_2 дополнительно

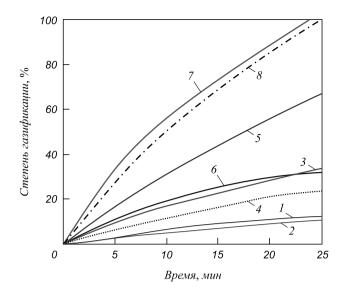


Рис. 3. Кинетика газификации графита (I-4) и древесного угля (5-8) смесями 70 % $\rm CO_2+30$ % Ar (I, S), 30 % $\rm H_2O+70$ % Ar (I, I) и 70 % $\rm CO_2+30$ % $\rm H_2O$ (I) при 1273 К. Суммарный результат газификации $\rm C_{TB}$ первой и второй смесью (I, I).

используется через посредничество водорода по реакции (8).

Выводы. Представленные результаты исследований раскрывают причины несоответствия между термодинамическими возможностями и реальным соотноше-

нием скоростей гетерогенных реакций (1) и (2). Преимущества последней определяются более интенсивным развитием диффузионного газообмена и адсорбционнохимических взаимодействий с участием H_2O-H_2 .

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Гольдштейн Н.Л. Водород в доменном процессе. М.: Металлургия, 1971. 208 с.
- Некрасов З.И., Москалина Н.Ф. // Сталь. 1962. № 9. С. 773 – 776.
- Симонов В.К., Руденко Л.Н., Гришин А.М. и др. // Изв. вуз. Черная металлургия. 1994. № 11. С.6 – 8.
- **4.** Гришин А.М., Симонов В.К., Власенко В.Н. //Новини науки Придніпров'я. 2010. Май. С. 129 131.
- 5. Казачков Е.А. Расчеты по теории металлургических процессов. М.: Металлургия, 1988. 288 с.
- Богданди Л., Энгель Г.-Ю. Восстановление железных руд. Пер. с нем. –М.: Металлургия, 1971. – 519 с.
- Симонов В.К., Островский В.М. // Теория и практика металлургии. 1998. № 2. С. 25 – 27.
- 8. Ростов цев С.Т. Теория металлургических процессов. М.: Металлургиздат, 1956. 515 с.
- Есин О.А., Гельд П.В. Физическая химия пирометаллургических процессов. Ч. І. – Свердловск: Металлургиздат, 1962. – 671с.
- 10. Гюльмалиев А.М., Головин Г.С., Гладун Т.Г. Теоретические основы химии угля. М.: МГорУ, 2003. 536 с.

© 2013 г. А.М. Гришин, В.К. Симонов, И.С. Щеглова Поступила 20 марта 2013 г.