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Abstract. Shewhart control charts (ShCCs) are a powerful and technically simple tool for process variability analysis. However, simultaneously, they
cannot be fully algorithmized and require deep process knowledge together with additional data analysis. ShCCs are well known, though, and
the number of papers is great, as well as standards on ShCCs work in most countries, there are some serious obstacles for their effective application
which are not being discussed in either educational or scientific literature. Just these problems are being considered in this paper. We analyzed two
sides of standard assumption about data normality. First, we discuss the widely-spread misconception that measurement data are always distributed
according Gauss law. Then, it is shown how the deviation from normality may impact the method of ShCCs’ constructing and interpreting.
Using a specific process data, we debate on right and wrong ways to build ShCC. Further, the paper describes two new definitions of assignable
causes of variation: not changing (/-type) and changing (X-type) the system. At the end, we discuss how the work with ShCCs should be organized
effectively. It is outlined that creating and analyzing ShCCs is always a system question of interaction between the process and the person who
tries to improve this process.
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Annomayus. Kourponsnsie kaptsl lyxapra (KKII) — MOMmHBIA U TEXHHMYECKH BECbMa MPOCTON MHCTPYMEHT aHaaM3a BapHaOEIbHOCTH
MPOLECCOB, HO OZHOBPEMEHHO OH HE MOXET OBITH MOJHOCTBIO ANTOPHUTMH3MPOBAH M TPeOyeT IIyOOKOro 3HAHHUS MPOLECcca B COUYETAHHM
C JONOJIHUTEIbHBIM aHaNIN30M JaHHbIX. XoTs camu 1o cebe KKII u3BeCTHBI Ou€Hb JaBHO, YMCIO0 PabOT OFPOMHO M CTAHAAPThl HA HpUMe-
HEHUE KapT BHEIPEHHI B OONBIIMHCTBE CTPAaH MUPA, CYLIIECTBYET HECKONBKO MIPUHIUNNAIBHO BaXKHBIX MPo0IeM ux 3(b(PEeKTHBHOTO IpHMe-
HEHMs, KOTOpbIE MPAKTUYECKM HE HAXOIAT CBOETO OTPAKEHMs HM B HAay4HO-UCCIIENOBATENbCKOH, HU B yueOHOH smteparype. MmeHHO
9TUM HpoOieMaM M IOCBAIIEHA JaHHas pabora. B wacTHOCTH, MccienoBaHBI ABa acIeKTa CTaHAAPTHOTO MOMYIICHHS O HOPMAalbHOCTH
3aKOHa pacrnpejesieHus AaHHbIX. CHauanaa aBTOPbl U3yUMIIUM IIMPOKO PACHPOCTPAHEHHOE 3a0Iy’KAEHHE O TOM, UTO PE3YJIbTAaThl U3MEPEHUI
BCET/Ia PacIpesieieHbl B COOTBETCTBHU € 3aKOHOM ['aycca. 3aTeM moka3aiu, 4TO OTKJIOHEHHE peanbHON (QyHKIMU pacmpenencHus JaHHBIX
OT HOPMAJILHOCTH MOXKET IIPU ONPEJECNICHHbIX YCIOBUSAX NPUBOAUTH K CYIIECTBEHHBIM M3MEHEHUSIM B METOAUKE ITOCTPOEHHS U MHTEpIIpe-
Talluu KOHTPOIBHBIX KapT. Jlanee, Ha mpuMepe KOHKPETHOTO Impolecca, ObUI0 pacCMOTPEHO, KaK MPAaBUIIBHO U KaK HENPAaBUIBHO CTPOUTH
n unrepnperuposars KKII, nocie yero ncciiesoBana NpUHIHUIIKAIBHO BaXkHas MpoOieMa ONepalioHalIbHOTO ONpeIesIeH s 0COObIX/Crienu-
aJIbHBIX NPUYHMH BapUallUi. ABTOPHI IPEIararoT BBECTU 1Ba THIA 0COOBIX MPUYUH: HE MEHAIOINX (/-TUI) U U3MEHSIOMUX (X-THII) CUCTEMY.
B koHI1le paboOThI PacCMOTpPEH BONPOC O TOM, Kak NpaBmiIbHO opranuzoBark pabory ¢ KKII. [ToguepkHyTo, 4TO MOCTPOSHUE U MHTEPIpE-
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All models are wrong,
but some are useful.
George Box

- INTRODUCTION

Shewhart Control Charts (ShCCs) are widely recog-
nized as a principal tool evaluating process stability
at almost all fields of human activity. These charts were
developed nearly a century ago by Walter Shewhart, who
is acclaimed for his significant contributions to the field
of quality management. His famous works, published
in 1931 and 1939, have been reissued in facsimile
editions by the American Society for Quality in 1980
and 1986, respectively [1;2]. W. Edwards Deming,
a close collaborator and friend of Shewhart, wrote
a brief foreword to the 1939 publication, concluding
with the following words: “Another half-century may
pass before the full spectrum of Dr. Shewhart’s con-
tributions has been revealed in liberal education, sci-
ence, and industry” [2]. This paper aims to address
some of the obstacles encountered in achieving the
vision articulated by Deming. Firstly, we will examine
the extent to which ShCCs have been adopted globally.
Then, we will explain why, despite its apparent simp-
licity, the ShCCs remain a challenging tool to apply
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effectively. This analysis will draw upon both historical
studies and recent research findings.

[ CURRENT STATUS OF SHCCS USE

Upon first review, the use of ShCCs seems to be
quite straightforward, finding application across diverse
sectors such as metallurgy, automotive, semiconductor
manufacturing, aviation, agriculture, government, health-
care, and education.

ShCCs, as part of statistical process control (SPC),
are widely cited in scholarly works [3 — 6], ranging
from foundational texts that are considered classics to
contemporary studies [7 — 10]. They are also supported
by international standards like those mentioned in [11]
and various online resources that provide instructions for
their use.

However, there are at least two problems that cannot
let us say “Everything is OK!” in the area of ShCCs. One
notable issue is the declining interest in ShCCs among
statisticians and industry professionals, as evidenced
by the information depicted in Fig. I and a decrease in
the volume of related scholarly publications in esteemed
journals. The paper [12] recently addressed this topic.
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Fig. 1. Dynamics of internet requests to ShCCs and two its competitors
(cumulative charts and charts with exponentially weighted moving average) throughout the World since 2004
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Part of this issue can be attributed to the formal and
bureaucratic procedures for implementing ShCCs man-
dated by some international standards. Another concern
is the noticeable scarcity of new research on ShCCs that
goes beyond the conventional models of basic control
charts. Our critique does not concern the creation of new
types of charts — there is plenty of innovation in that area.
Instead, we highlight the need for expanding the appli-
cations of charts beyond the traditional assumptions
of ShCCs theory. Here are a few uncommon examples
of such research. In 2011, the study “Assignable causes
of variation and statistical models: another approach
to an old topic” was published [13]. The authors, one
of whom is a co-author of this article, suggested dividing
the assignable causes of variation into two categories:
those caused by an intervention with the same distribu-
tion function (DF) as the original process and those with
a different DF. While the former approach has been used
in all prior studies, the latter presents an operating cha-
racteristic (the probability of a point exceeding the chart
limits) that significantly deviates from what is described
in textbooks. The 2017 publication [14] brought up
the significant issue regarding the sequence of points,
highlighting that processes with random data are nearly
non-existent. However, current ShCCs theory assumes
that process data are completely random. In 2021, a paper
was released detailing the effects of a transient shift
in the process mean on ShCCs behavior [15]. The fin-
dings demonstrated that in cases of a transient shift, the
chart for the mean might become less effective com-
pared to the chart for individual values. This contradicts
all standard SPC guidelines. These examples represent
just a small fraction of the potential for broadening the
scope of traditional ShCCs applications by challenging
the assumptions that have underpinned standard models
for decades.

This work further extends the exploration of tradi-
tionally overlooked conditions. This time, we will move
beyond the common assumption that process parameters
are normally distributed and will discuss several impli-
cations of this departure. Additionally, we will examine
various types of assignable causes of variation and their
effects on the utilization of ShCCs.

- EFFECTS OF NON-NORMAL DISTRIBUTION ON SHCCS
PERFORMANCE

This section is divided into two parts. Firstly, we will
examine whether measurement results are always nor-
mally distributed. Secondly, we will show how the limits
of ShCCs change when the DF is non-normal and will
describe the most user-friendly method to address this
issue.

Are the measurement results always normally
distributed? This assumption is widely accepted

by numerous authors, texts, and even standards. For
example, the standard [11] articulates: “According to this
standard, the application of control charts for quantita-
tive data presumes that the characteristic under surveil-
lance adheres to a normal (Gaussian) distribution, and
deviations from this norm can influence the effectiveness
of'the charts. The coefficients for calculating control limits
are predicated on a normal distribution of characteristics.
Given that control limits frequently serve as empirical
benchmarks in decision-making, reasonably small devia-
tions from normality are conceivable. The central limit
theorem posits that sample mean values tend toward a nor-
mal distribution, even if individual observations deviate
from this norm. This supports the premise of normal-
ity for X-charts, even with sample sizes as small as 4 or
5 units. However, for assessments of process capabilities
using individual observations, the actual distribution is
crucial. Although the distributions of ranges and standard
deviations deviate from normality, the calculation of con-
trol limits for range and standard deviation charts initially
assumed normality. Nevertheless, minor deviations from
a normal distribution in process characteristics should
not prevent the employment of such charts for empirical
decision-making” (emphasis ours).

But what exactly constitutes “reasonably small devia-
tions from normality” or “minor deviations™? These terms
do not provide a clear definition of what extent of change
in the distribution law is deemed significant [16] Recent
findings [17] offer an operational definition for these
terms and an algorithm for constructing ShCCs under
the clear presence of non-normal DF.

A common misconception about the universal appli-
cability of the normal law is the belief that measurement
results always follow a Gaussian curve. To empirically
test this assumption, three parts from the same process
but from different points within the tolerance range were
each measured 150 times using the same instrument.
The outcomes are depicted in Fig. 2. ShCCs for the parts
indicated that the processes for the first and second parts
were stable, whereas for the third part, just three distinct
categories were identified. All histograms were notice-
ably non-normal, and the hypothesis of normality was
conclusively disproven through the testing procedure
outlined in [18]. Therefore, it is reasonable to argue that
the results of repeated measurements might not adhere
to the normal distribution, akin to the measurement out-
comes of various objects.

How does non-normality of DFs affect ShCCs
coefficients? Numerous DF processes markedly devi-
ate from the Gaussian law. The question arises: how can
the stability of such processes be assessed when a cont-
rol chart is the sole instrument for ascertaining process
stability? The study [17] offers an exhaustive literature
review alongside the outcomes of simulating asymmetric
data. It contrasts the results of analyzing non-normal data
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Fig. 2. Histograms and empirical distribution functions (DFs) for many repeated measurements
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through both the conventional method and the algorithm
introduced in [17]. The conventional method adheres to
the declaration cited from the standard [11]. Yet, what
will empirical evidence disclose?
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Initially, 400 samples of random numbers following
an exponential distribution with the parameter A = 0.01
were generated, with each sample comprising 400 points.
This was achieved by generating random numbers from a
uniform distribution function using Excel, and then trans-
forming these numbers by taking their logarithms and
multiplying by (-100) to produce a set of exponentially
distributed data samples.

The histogram for one of the generated samples is
displayed in Fig. 3, a. Fig. 3, b illustrates the empirical
DF on a probability plot for the exponential distribution.
Both sections of Fig. 3 affirm that the sample’s point
distribution closely aligns with an exponential distribu-
tion'. The descriptive statistics parameters are as follows:
the mean is 105.5; the standard deviation is 105.0; skew-
ness is 1.82; kurtosis is 3.78 (Note: Excel 2013 calculates
excess kurtosis); the minimum value is 0.51; the maxi-
mum value is 541.4; the median is 73.9; the first quartile
is 31.1; the third quartile is 142.8; and the upper boun-
dary for extreme outliers is determined to be 477.87,
which allowed for the identification of eight extreme out-
lier (EO)? points (these are clearly visible in Fig. 3, b).

After removing EOs, the control chart for individual
values and moving range (x-mR) was created using stan-

'Note to practitioners: When analyzing data, it's often unclear which
distribution function (DF), if any, is appropriate to describe them. What
should be done in such cases? Here's a solution: if the dataset contains
more than 50 points, construct a histogram; if fewer, create a box-and-
whisker plot. Often, these visual representations will indicate whether a
normal approximation is feasible. Additionally, employing probability
papers (such as normal, log-normal, or Weibull paper) can be beneficial
help in some situations.

2 The Tukey method was used to detect EOs, the coefficient 1.5 being
replaced by 3.0.
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dardized values of ShCCs coefficients [19]: E, = 2.66;
D, = 3.27. The resulting x-mR chart is depicted in Fig. 4,
with the control limits illustrated by dashed lines. The pro-
cess is identified as unstable, as seven points (representing
1.8 % of the total) in the chart for individual values (x)
and nine points (accounting for 2.2 %) in the chart for
moving range (mR) exceed the upper control limit (UCL).
However, based on the findings in [17], the coefficient d,
for an exponential DF should be 2.99, not 2.66. The limit,
recalculated using the revised coefficients, is also dis-
played in Fig. 4, marked by long dashes. It is observed
that with this adjustment, only six points in the x-chart
exceed the UCL. Similarly, on the mR chart, the count
of points exceeding the upper control limit dropped
to four from nine, nearly halving the number of signals.
Therefore, in this scenario, the incidence of false alarms
was reduced by 14 % on the chart for individual values
and by 44 % on the moving range chart. Using a chart for
medians, instead of means, would have produced identi-
cal outcomes.

In a second example, monthly data on the number
of technological violations at a large mining and proces-
sing plant are presented in a Table.

The question arises: Should the increased value in
September be considered an assignable cause of varia-
tion, or in other words, is the process stable?

To address this, an x-mR chart needs to be constructed.
Using the traditional methodology for creating ShCCs, we
obtain the following parameters for the chart: the center
line (CL) is 20.7; the mean moving range (MMR) is 13.2;
the UCL is 55.7. With the September value exceeding the
UCL, it suggests that the process is unstable, and an inter-
ference cause should be identified. However, this conclu-
sion comes from the traditional approach. The critical
inquiry then is whether employing the traditional method
was appropriate for this analysis.

Given the small sample size, a box-and-whisker plot
was chosen over a histogram (Fig. 5). This plot clearly
indicates that the data are asymmetric. The question then
arises: Is this level of deviation from normality significant?
One method to address this question involves calculating
the skewness and kurtosis values. Excel reports skew-
ness as 2.0 and kurtosis as 4.7. However, Excel calculates
excess kurtosis, meaning the actual kurtosis value is 7.7.
According to [17], for kurtosis values exceeding 7.0 —

Violations of technological discipline at the plant

Hapymel-mn TEXHOJIOIHYeCKOoM JUCHUILIMHBI HA KOMOUHATe

Dynamics of technology violations for the year

January | February | March | April May June

July

August | September | October | November | December

13 14 8 11 14 8

33 24 60 15 22 26
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Fig. 5. Box-and-whisker plot for Table data (a)
and Pearson curve plane from [17] (b)
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when the specific DF matching our data is unknown —
it is recommended to use the coefficient value for the
closest point on the plane of Pearson curves (Fig. 5, b).
For the data in question, the nearest point is BS, corre-
sponding to the Barr DF. The E, value for this DF = 2.81
and adjusted UCL =57.7 [17]. Therefore, the value for
September still exceeds the UCL, leaving the assessment
of process stability unchanged. However, if the data had
been closer to an exponential distribution (for example, if
the kurtosis were about 9), then the adjusted coefficient
would be 2.99, the adjusted UCL would become 60.1,
and the process would be considered stable, indicating no
assignable causes of variation on the chart.

These examples demonstrate an important aspect
of the ShCCs that is often overlooked by many schol-
ars and not fully grasped by practitioners: ShCCs are
the tool that necessitates direct interaction with the pro-
cess. The construction of the ShCCs cannot be entirely
reduced to an algorithm [20]. To use ShCCs effectively,
one must possess a deep understanding of the process’s
nuances as well as a solid grasp of control chart theory.
The authors claim that the absence of such a synergistic
approach is likely the main reason why this potent tool
frequently fails to give a practitioner a helping hand.

[l REFLECTIONS ON PROCESS STABILITY
AND ANALYSIS TECHNIQUES

As mentioned earlier, the Shewhart control chart is
the only tool for determining process stability. However,
different types of instability necessitate varied responses.
Let us examine the process shown in Fig. 6, which comes
from a real case with data collected from a machine-
building plant in Russia. The manufacturing techno-
logy for the part being monitored did not change at all
during the period of observation, and the production sys-
tem remained the same. Fig. 6 illustrates that all manu-
factured parts met tolerance requirements (there were no
rejections), which means the customer’s standards were
met. From the perspective of process stability, let us
examine the subject first through the eyes of an engineer
unfamiliar with SPC procedures, whom we will refer to
as a novice, and then from the standpoint of a user well-
versed in SPC methods, referred to as an expert.

A novice, without hesitation, will analyze all avai-
lable data and derive the x-mR chart as illustrated in
Fig. 7. The CL will be calculated at 40.865, the UCL
at 40.913, and the lower control limit (LCL) at 40.817.
This chart suggests that the process exhibits instabi-
lity (with one point exceeding the UCL and four points
surpassing the UCLmR on the mR chart). Alternatively,
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it could be interpreted that the process was stable dur-
ing August and September 2021 and in March 2022 but
entered a phase of instability in October 2021 and again
in March 2022. For the novice, computing the Process
Capability Index (PCI) also presents no challenge: Cp
will be equal to 1.04 (0.1 divided by 6 sigma, with sigma
being the mean moving range divided by d,). A C value
of 1.04 equates to a potential non-conformity level (NL)
of 0.18 % or a process yield (PY) of 99.82 %.

An expert would observe that the process is distinctly
heterogeneous and recommend its division into homoge-
neous segments for more accurate analysis. This approach
of stratification is depicted in Fig. 8, where four segments
are identified, each with distinct CL values and control
limits:

Section 1: August — October 2020.

CL = 40.8665; CLmR = 0.0173; UCL = 40.9124;
LCL =40.8206; UCLmR = 0.0564.

Section 2: February 2021.

CL = 40.8830; CLmR = 0.0189; UCL = 40.9331;
LCL =40.8329; UCLmR = 0.0616.

Section 3: March 2021.

CL = 40.8662; CLmR = 0.0123; UCL = 40.8990;

LCL =40.8334; UCLmR = 0.0403.
Section 4: end of March and August 2021.

CL = 40.8537; CLmR = 0.0256; UCL = 40.9218;
LCL =40.7856; UCLmR = 0.0837.

The PCI values for each section are as follows:
section 1: Cp = 1.09; section 2: Cp = 1.00; section 3:
C, = 1.53; section 4: C = 0.73. Calculating NL for each
section yields values ranging from 4.7 to 27,525 ppm.
Given such a jaw-dropping difference, two pressing ques-
tions arise:

— Which analytical method is most appropriate for
process improvement?

— How should the stability of such a process be inter-
preted?

Let us address the latter question first.

[l VARIOUS FORMS OF PROCESS INSTABILITY

It’s clear that instability can manifest itself in various
forms. Dr. Deming highlighted this distinction in his
introduction to Shewhart’s 1939 book [2]: “A signifi-
cant contribution of the control chart lies in its ability
to methodically differentiate variation sources into two
categories: (1) systemic causes (“‘change causes”, as
Dr. Shewhart termed them), which fall under manage-
ment’s purview; and (2) assignable causes, referred
to by Deming as “special causes”, which are tied to tran-
sient events and can typically be identified and eliminated
by the process expert. A process is deemed to be in sta-
tistical control when it is free from the impact of special
causes. Such a process, once in statistical control, exhi-
bits predictable performance”. Fig. 9, drawn from [21],
explores various special causes of variation identified
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Fig. 7. x-mR chart constructed by a novice:
a — not stratified x chart; b — not stratified mR chart

Puc. 7. Kapta x-mR, mocTpoeHHass HOBUYKOM:
a — He cTpatnUIUpPOBaHHAs X KapTa; b — He CTpaTuUIUpPOBaHHAs MR KapTa

127



N3BECTUA BY30B. YEPHASA METAJIJIYPTUA. 2024;67(1):121-131.
lInep B.J1, llepememuwesa C.A. u dp. KontposibHble KapThl LllyxapTa - mpocTol, HO He JIETKUi /1 TpUMeHeHUs] MHCTPYMEHT aHaIn3a JJaHHbIX

40.95

40.93
40.91
40.89
40.87
40.85
40.83
40.81
40.79
40.77

Hole diameter, mm

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Moving range

0%/—)\ '

Vo
October
2020

August September
2020 2020

February
2021

Measurement date

Fig. 8. x-mR chart constructed by an expert:
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Puc. 8. Kapta x-mR, mocTpoeHHast 9KCIIEPTOM:
a — cTpaTu(UIMpOBaHHas X KapTa; b — cTpaTuduIpoBaHHas mR KapTa

in different processes. In three of the four illustrations,
a step change in the mean, outliers, and a drift in the mean
are evident. However, only the illustration depicting out-
liers aligns with the “ephemeral event”. Deming men-
tioned in the previously quoted text. Deming wasn’t
alone in this viewpoint. W. Woodall in the paper [22]
provides this definition: “Common cause variation is
attributed to the intrinsic characteristics of the process
and cannot be modified without altering the process itself.
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“Assignable (or special) causes” of variation are unusual
shocks or other disruptions to the process, the causes
of which can and should be removed”.

The two left images in Fig. 9 indicate that the pro-
cess underwent a change due to some cause. The question
arises: Is this cause common or assignable? Given that
common causes are regarded as “constant” (a term used
by Shewhart in his works [1; 2]) and inherent to the pro-
cess itself, the causes for the variation seen in the left
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Fig. 9. Different types of variation:
1 — short-term; 2 — long-term

Puc. 9. Pa3niuHble THITBI BApHALIUIA:
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part of Fig. 9 should be classified as assignable. How-
ever, these causes differ from outliers and other transient
events. Thus, it appears suitable to acknowledge different
types of assignable (special) causes. In reference [13],
the authors suggest introducing two types of assignable
causes of variation. After slightly altering the language
of [13], we propose the following definitions:

Definition 1. An assignable cause of variation, Type /
(Intrinsic) does not alter the system within which the pro-
cess functions (for example, it does not change the type
of the underlying DF). As a result, this kind of assignable
cause can be naturally perceived as part of the system
(though this is not a strict requirement).

Definition 2. An assignable cause, Type X (eXtrinsic)
modifies the system in which the process operates (for
example, it changes the type of the underlying DF). Con-
sequently, this kind of assignable cause can be naturally
viewed as external to the system (though this, too, is not
an absolute necessity).

If the scientific community agree with this idea,
the distinction between a novice and an expert will boil
down to understanding the nuances between various
types of assignable causes. Regardless, the process under
study is unstable. However, the different forms of insta-
bility are fundamentally distinct. When confronted with
Type [ instability, it is crucial to search for the root causes
of interference within the system. This responsibility
should fall to the process team, as they possess deep
insights into the process and system. Conversely, when
dealing with Type X instability, identifying the root cause
outside the system becomes necessary. Dr. Deming often
stated, “A system must be managed; it will not manage
itself” [23] In such instances, the senior management
responsible for overseeing the system as a whole should
undertake the search for root causes.

[l WHICH ANALYSIS METHOD IS MORE SUITABLE
FOR PROCESS IMPROVEMENT

The answer is obvious — it relies on the specific goal
and current condition of the process. Each approach
may be effective in one context yet ineffective in
another, a notion that circles back to the initial discus-
sion in the article. Technically, ShCCs might seem ele-
mentary, yet their practical use is more complex. Even
a grade school student might grasp the basic formulas for
chart parameter calculations. But proper use of ShCCs
requires a deep understanding of the analyzed process
and a keen awareness of the many assumptions and limi-
tations that come into play in practical settings. More-
over, it demands the integration and effective applica-
tion of knowledge from diverse areas. Collaborative
efforts often lead to the most successful outcomes with
ShCCs. We agree with the statement expressed in [12]:
to get closer to G. Wells’ vision that statistical thinking

is as vital for competent citizenship as literacy, statisti-
cal thinking should be incorporated early in educational
programs. This means that ShCCs fundamentals should
be included in the elementary school curriculum.

- CONCLUSIONS

Our examination of the usage of ShCCs has revealed
that, despite their widespread use, several challenges
obstruct their more effective practical application.
To address some of these challenges, we suggest:

— ignoring the standard assumption that data are nor-
mally distributed when analyzing measurement systems;

— using alternative constants to calculate ShCCs cont-
rol limits when it is evident that process data are non-
normal;

— adopting a new method for identifying assignable
causes of variation.

Implementing these recommendations could signifi-
cantly refine the application of ShCCs, leading to more
accurate decisions when analyzing real data and, there-
fore, enhancing the management quality of the processes
in question.

Our research revealed a significant insight: the proper
deployment of ShCCs cannot be algorithmized auto-
matically. A deep understanding of the process details
and additional analyses, such as understanding the dis-
tribution function or the sequencing of data points, is
essential. This understanding is crucial for choosing
the right sections of the process, deciding on the chart
type, setting the length of phase 1, or picking the right
coefficients for calculating control limits. Such under-
standing can’t be programmed into statistical software;
it comes from the interaction between the person manag-
ing the process and the process itself.

We hope that this article will help convey a straight-
forward yet overlooked point: the Shewhart control
chart may seem simple as an SPC tool, but that simpli-
city is deceptive. To use it effectively, one needs a thor-
ough understanding of the process and solid knowledge
of the theories underlying variability.
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