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Abstract. Prediction and control of the carbon content after the end of oxygen blow in BOF converter are key points of steel production efficiency.
One of the most accurate methods is the dynamic predicting method based on the use of intermediate sublance measurement (TSC probe) when
about 85 —90 % of total oxygen is consumed and on the final period model. Models of the final period are traditionally based on exponential
or cubic functions, currently there are developments based on neural network technologies. We investigated the possibility of using a neural network
to predict the final carbon content using the results of intermediate sublance measurement (TSO probe) when about 95 % of total oxygen is consumed.
As a model of the final period, a two-layer neural network with one hidden layer and an activation function of the Softplus type for all neurons was
implemented in software. The input vectors contain initial carbon content and oxygen consumption for the second blow values. The output vector
contains the predicted final carbon content, the output training vector - actual final carbon content values. The network was trained on 700 heats
data of the training set. The model trained in this way was tested on 232 heats data of the testing set. The prediction errors distribution and values
of the mean absolute error and root mean square error for the training and testing sets are correspondingly close. They are also comparable with similar
indicators of the heats, the final period of which was carried out without oxygen blow (only flux additions and/or nitrogen blow), and this indicates
a high accuracy of the prediction.
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AnHomayus. ITIporHo3upoBaHKe U yIpaBICHUE COJCPIKAHUEM YINIEpO/a B METaJlJIe 110 OKOHYaHUH MTPOYBKU B KUCIIOPOJHOM KOHBEPTEPE SBIISIOTCS
KJIIOUEBBIMH MOMEHTaMM B obecriedeHnu 3G ()EKTUBHOCTH MPOM3BOICTBA cTanu. Haubosee TOYHBIM METOIOM SIBIISIETCSI METOJ| TMHAMUYECKOTO
IIPOTHO3UPOBAHMs, OCHOBAaHHBIA HA MCIOJIb30BAaHMM HMH(POPMAIMU IPOMEXKYTOYHOro 3amepa Qypmoii-30H10M (Onok trma TSC) B mepuox
n3pacxonoBanus nopsaka 85 — 90 % obiiero pacxoia KMCIOPOAa Ha IUIABKY M NMPUHATOW MOJEIH 3aKIIOYUTEILHOTO Ieproaa npoxyBku. Jlis
IIPOTHOZUPOBAHMS TPAJUIIMOHHO HCIIOIB3YIOTCSI MOJICIH 3aKJIFOUUTEIBHOTO TIEPHO/a Ha OCHOBE SKCIOHEHIIMAIBHBIX MM KyOUUeCKUX (YHKIHH,
CYILECTBYIOT Pa3pabOTKK Ha OCHOBE HEHPOCETEBBIX TEXHOJIOTHH. B HacToOsIIIeM HCClIeIOBAHUH 3aKITIOYUTEbHBIH IEPHO ITTABKH ONPEICININ KaK
MIEPUOJT MEXK/Y NEPBBIM M ITOCIEIHUM (IIepe]] BBITYCKOM IUIABKH) 3aMepaMu (ypMOi-30HI0M. B 3aBUCHMOCTH OT pe3yibTaToB IEPBOTO 3amepa
1 TpeOyeMbIX MapaMeTpoB METAJIa B ATOT MEPUOJ] MOXKET MIPONU3BOIUTHLCS MPOIYBKA KHCIOPOJOM, TpUcaKa (IFOCOB, a TAKKE YCPEAHUTEIbHAS
IpojlyBKa a30TOM. bbula HcclieqoBaHa BO3MOXHOCTb HCIOJIb30BAaHMS HEHPOCETH JUIS MPOrHO3UPOBAHHUS KOHEYHOIO COMAEpIKaHHs yIIepona
C MCIOJIb30BaHUEM PE3yJIbTAaTOB IIPOMEKYTOYHOTO 3amepa (pypmoii—30Ha0M (010K Tuna TSO) B nepron u3pacxonoBanus nopsiuka 95 % obuiero
pacxojia KMCJIOpO/ia Ha IJIaBKy. B kauecTBe MozIeNH 3aKIF0YNTENBHOTO eprozia Oblila IPOrpaMMHO peaii30BaHa By XCIIONHHAS HEHPOCETh C OTHUM
CKPBITBIM CJIOEM U aKTHBAIIMOHHOW (yHKimed tumna Softplus ams Beex HeiipoHOB. BxojHbIe TaHHBIE - COAEPIKAHUE YITIEpoaa MPOMEKYTOUHOTO
3aMepa U pacxofl KMCJIOPOJa Ha 3aKJIIOYUTENIbHbIA epHOoJ MPOLYBKH. BEIXOIHbBIE JaHHbIE — IPOTHO3UPYEMOE KOHEUHOE COAEPKaHUE YrIIeposa.
Jlnst oOyueHus NCTIONB30BANIKCH JIAaHHbIE MO (haKTHUYEeCKOMY KOHEYHOMY COJEpXKaHHMIO yriepona B Meraiuie. HelipoHHas ceTh Oblia HacTpoeHa
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no panubiM 700 maBok oOywaromied BeIOOpkH. HacrpoeHHas TakuM o0pa3oM Mofenb Oblia JONOJHUTEIBHO HMPOTECTHPOBAHA HA JAHHBIX
232 nnaBoK, He HCIOIb30BABIINXCA IPH 00y4eHHUH. [lomydens! Onu3Kkue 3HaYeHNs OIIHOOK IIPOrHO3a I 00yJaroel 1 TeCTUPYIOMEeH BEIOOPOK.
Kpome Toro, nonydyeHHble 3Ha4€HUS OMIUOOK COMOCTABUMBI ¢ U3MEHEHUSIMU COJIEpKaHus yIIepoa Uil TIaBOK 0e3 MCIIOIb30BaHUS KHCIOpoIa
B 3aKJIFOYUTENBHBIN IEPHO, YTO TOBOPUT O BHICOKON TOUHOCTH IMPOTHO3A.

Kawueswlie caosa: KHCHOpOL[HLIﬁ KOHBEPTEP, COACPIKAHUC yIlIepoaa, U3MEpUTCIIbHAs (I)pra, MaTeMaTu4eCKOC MOJACIIMPOBAHUEC, IIPOTHO3UPOBAHUEC,

3aKJIIOUUTENNbHBIN IepUoA, HEHPOHHAS CETh

Jna yumupoeaHnus: Waxupos M.K., [Iporononios E.B., 3umun A.B., TypuanunoB E.b. [Iporno3upoBanue coaepanus yriepoia B MeTalIe 3aK-
JIFOUUTENILHOTO TI€PHOJa MPOAYBKH B KHCIOPOJHOM KOHBEPTEpPE C UCIIONL30BAHUEM HEHPOHHOI ceTu. Mssecmus 6y306. Yepnas memaniypeusi.

2023;66(6):638-644. https://doi.org/10.17073/0368-0797-2023-6-638-644

[ INTRODUCTION

The accumulated operational experience with con-
verters employing upper oxygen blow has compellingly
demonstrated the process’s advantages. These include
high productivity, sufficiently durable unit lining, simple
equipment design and operation, and technological
flexibility regarding the composition of processed pig-
ments [1 —3]. However, achieving stable technological
melting indicators and overall process efficiency depends
significantly on the accuracy and correctness of deter-
mining the completion moment of the operation [4].

In the practice of organizing blowing, addressing this
challenge typically involves using indirect characteristics
to gauge the progress of blowing and the bath’s behavior.
Examples include:

— determining the completion moment of the blowing
operation based on the oxygen consumption amount;

— observing the luminosity intensity of the exhaust gas
plume above the converter;

—analyzing the chemical composition of exhaust
gases;

—examining changes in indirect characteristics such
as the bath’s behavior (acoustic phenomena, lance vibra-
tion), observing the temperature of the water cooling
the lance, and measuring the electrical conductivity
of the bath, among others.

Simultaneously, the enumerated elements and methods
for controlling the blowing process can be categorized as
subjective factors, assuming a high level of competence
among the process personnel. However, the rapidity
of oxidative refining processes within the BOF, coupled
with intense dust and gas emissions, and the fluctuating
bath level with the potential for emissions or, conversely,
slag coagulation, all contribute to the substantial comp-
lexity in managing the smelting process.

The scrutinized predictive models assume particular
significance in the production of specialty steels, espe-
cially low-carbon steels, including void-free steels with
minimal impurities (<0.003 % C and 0.004 % N). In this
context, the accurate prediction and control of carbon con-
tent in the metal during the final phase of the blowing
operation emerge as a critical task. Effectively addressing

this challenge facilitates an improvement and stabiliza-
tion of technological performance.

Incorporating additional information for predicting
smelting characteristics, the well-established methods
for calculating residual carbon content in metal prior
to release can be classified as follows [4; 5]:

— prediction through static models;
— prediction through dynamic models;

— intelligent prediction.

1. Static prediction

Static prediction employs what are known as static
melt models, relying on calculations of thermal and mate-
rial balances or statistical descriptions of the entire melt.
Initial data include the chemical composition and temper-
ature of the iron, the chemical composition of the solid
metal charge and additional materials, along with results
from previous melts and the required values of metal
indicators at the end of blowing — primarily the chemi-
cal composition and temperature. This method facilitates
the determination of the quantity of charge and additional
materials, including assessment of the amount of oxygen
consumed during the blowing period necessary to achieve
the desired carbon content in the metal [6 — §].

However, the accuracy of this method in predicting
post-blowing melt parameters is not consistently stable
due to the influence of numerous uncontrolled factors [9].
These factors may encompass variations in the chemical
composition and physical properties of the metal charge,
fluctuations in properties and quantities of additives,
uncontrolled heat losses, losses of oxygen during differ-
ent blowing periods, and more [7]. Theoretical [10 — 12]
or static [13 — 15] models, including those based on neu-
ral networks, are the most commonly used approaches for
static forecasting.

2. Dynamic prediction

It is established that the use of a sublance in combina-
tion with models for the final blowing period serves as
a dynamic control tool, leading to a reduction in the melt-
ing cycle by significantly minimizing the time required
for corrective operations (turndown, metal cooling) [15].
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Models for the final period are constructed on a statisti-
cal description of the relationships between the ultimate
values of melting parameters — primarily carbon content
and temperature — their initial values, and the quantity
of consumed oxygen [16]. In this scenario, the decarburi-
zation rate can be expressed as follows

_ac
ot

=k(C-C,), (1
where k is the decarburization reaction rate constant, s;
C is the current concentration of carbon in the liquid
metal, %; C, is the minimum achievable carbon con-
centration in liquid metal, characterizing mass and rate
of carbon oxidation in the region of its low values, %; 1 is

the duration of oxygen blowing, s.

The use of a sublance facilitates the measurement and
sampling of metal for chemical analysis without the need for
tilting, which typically involves interrupting oxygen purge
and tilting the converter. In this scenario, two measurements
are usually conducted for each melting operation: one dur-
ing oxygen blowing (after 85 — 90 % of the estimated total
oxygen amount has been consumed) and another at the con-
clusion of the oxygen blowing process.

The first measurement uses TSC probes (temperature,
sample, carbon): metal temperature and carbon con-
tent are determined based on the liquidus temperature
of the melt, and a sample is taken. To enhance result relia-
bility, the oxygen blowing intensity is reduced during
this measurement period. The first “dynamic” measure-
ment serves as input for the final period model, which
calculates the necessary amount of oxygen and potential
coolant required to achieve the desired temperature and
carbon content during metal tapping.

Following the oxygen blowing phase, measurements
are conducted using TSO probes (temperature, sample,
oxygen): the metal’s temperature is determined, its oxida-
tion is assessed, carbon content is calculated, and a metal
sample is taken.

However, in domestic converter shops, TSC probes
are currently not employed, and measurements are instead
carried out using TSO probes during the blowing period,
corresponding to a lower (less than 0.15 %) carbon con-
tent in the metal.

The use of a measuring sublance helps eliminate
the influence of fluctuations in the properties of charge
materials, thereby enhancing the accuracy of predicting
the final carbon content for converter smelting compared
to static prediction methods. Some Japanese manufac-
turers have achieved predicting accuracy of over 90 %
within an interval of £0.02 % C [17].

Another variation of dynamic carbon content predic-
tion involves an approach based on utilizing indirect indi-
cators of the decarbonization process, such as the results
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of exhaust gas composition analysis. The primary draw-
back of this option, coupled with the impact on the results
of analyzing the amount of air drawn from the atmosphere
in the gas discharge tract operation mode with partial
combustion of exhaust gases, is the presence of a delay
(time delay) in the initial information for calculation.

3. Intelligent prediction

Intelligent prediction of carbon content in the melt, as
per the aforementioned characteristics, involves employ-
ing additional indirect information about the progress
of the process, such as the vibration of the oxygen lance,
the level of slag-metal emulsion, acoustic characteristics
of the blowing progress, and more.

The initial application of this approach includes
the development of a model for the final blowdown period
based on a neural network [18].

Specifically, to predict carbon content, a network is
employed with input neurons corresponding to carbon con-
tent measured by the sublance of the probe, the amount
of oxygen, and coolant consumed during the final period.
The positive results obtained allow for conclusions regard-
ing the effectiveness of the method used.

The development and implementation of such app-
roaches underscore the advantages of predicting car-
bon content in the final blowing period using neural
networks compared to exponential, cubic, and carbon oxi-
dation models based on analysis of the chemical com-
position of exhaust gases. Notably, these studies were
conducted using experimental data from intermediate
measurements employing only TSC probes [17; 19 — 21].

Therefore, it appears pertinent to evaluate the suit-
ability of neural networks for describing the final period
of blowing, particularly for predicting the final car-
bon content in the metal based on intermediate mea-
surement data from TSO probes commonly used in
the industry.

[ RESEARCH METHODOLOGY

In this current study, the final blowing period was
defined as the conditional interval between the first
and last (prior to heat release) sublance measurements.
Depending on the outcomes of the first measurement and
the required final parameters of the metal, activities such
as oxygen blowing, flux addition, and averaging nitrogen
blowing can be conducted during this period.

The study aimed to assess the accuracy of predicting
the final carbon content in the metal using intermediate
measurements by TSO probes, accounting for approxi-
mately 95 % of the estimated total oxygen consump-
tion for melting. Additionally, the results obtained were
compared with similar ones derived from technology uti-
lizing TSC probes.
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The data analyzed in this study were derived from
ongoing production heats conducted in a 350-ton con-
verter equipped with a measuring lance under the direct
supervision of the authors.

The melts chosen for training and testing the car-
bon content prediction specifically involved cases where
only oxygen blowing was employed in the final period.

The determination of initial carbon content relies
on sublance measurements conducted before the com-
mencement of the final period, while the final content is
ascertained through chemical analysis of a metal sample
taken with a sublance at the end of blowing. Table 1 pro-
vides the initial (C)) and final (C,) carbon content, along
with the change in carbon concentration resulting from
the final period (AC™ = C, — C)) and the oxygen con-
sumption for the operation. The Values are presented in
Table 1 as a ratio of the range of change in the numerator
to the average value in the denominator.

To predict the carbon content at the end of the final
blowing period, a two-layer neural network with one hid-
den layer was employed. The input data included the actual
carbon content in the metal before the start of the final
period C1 and the actual oxygen consumption in the final
period O5™. The output data consisted of the predicted
carbon content in the metal C2™*" at the end of the final
period. Training utilized data on the actual final car-
bon content from the metal sample. The activation func-
tion for the network was defined by the equation

Y=In(1 + ¢*). 2)
The initial and final carbon content, along with oxy-

gen consumption data, were normalized using the follo-
wing equation

* Cc-C_ .
C = i min , 3
l Cmax - Cvmin ( )

where C is the actual parameter value; C . and C_  are
the minimum and the maximum values of the parameter,

respectively.

A training set comprising data from 700 melts was
used, with the results tested on data from 232 subsequent
melts that followed the training set in chronological

Table 1

Parameters of the final oxygen blow period

Tabnuya 1. llapaMmeTpbl 3aKJII0YUTEIBHOIO
nepHoJa NPOAYBKH € HCIOJb30BAHUEM KHCJIOPO/iA

C,,% C,, % ACfml % | O, nmd
0.026 - 0.168 | 0.017-0.117 | 0-0.099 | 4114012
0.055 0.039 0.016 1156

order. Of these, 56 melts were conducted under the direct
supervision of the authors.

The network was trained using a backpropaga-
tion algorithm, specifically the gradient descent method.
Throughout the training process, the sum of squared
deviations between the actual C, and the predicted car-
bon content C¥** in the metal was minimized.

The accuracy of prediction was evaluated using
the following indicators:

— mean error, calculated as
(%-1). “)
where N is the number of observations; Y, );I are the actual

and the predicted values of the parameter, respectively;

— mean absolute error, calculated as

; )

sz%ik 7

(6)

[ RESULTS AND DISCUSSION

As a result of training and subsequent testing
of the neural network on the corresponding experimental
data arrays, a distribution of prediction errors of the final
carbon content in metal C,—Cy*™ was obtained
(see Fig.).

It’s noteworthy that the distribution of predic-
tion errors for the testing set closely aligns with
that of the training set. The indication that over 90 %
of errors fall within the range of =0.010 %, and approxi-
mately 70 % of melts fall within the range of £0.005 %,
suggests a sufficiently high accuracy in predicting
the final carbon content in the metal.

For a comprehensive comparison, the achieved predic-
tion accuracy indices for both the training and testing sets
were contrasted with similar indices obtained from melts
that did not involve the use of oxygen in the final period
of blowing. In these comparative melts, lime and/or lime-
stone additives were employed, and averaging nitrogen
blowing occurred through an oxygen lance. The initial
values of C|, derived from the results of the first sublance
probe measurement, were used as the predicted values for
the final carbon content C¥"** (Table 2). Accuracy indi-
cators were then calculated according to Egs. (4) — (6).

The results indicate that the accuracy indicators
characterizing the prediction for both the training and
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testing sets have close values. Additionally, these values
are comparable with those observed in melts conducted
without the use of oxygen in the final period. Changes in
carbon content (C,— C, = C, - CP* for such melts are
evidently associated with the heterogeneity of the chemi-
cal composition throughout the bulk of the metal bath.
In other words, the data obtained (Table 2) suggest
that the achieved prediction accuracy is on par with
changes in the carbon content in the metal, potentially
linked to the heterogeneity of the bath and, possibly, errors
in determining the carbon content during measurements
using sublance. The prediction accuracy of the proposed
model for the final period, within the ranges of +0.005
and +0.010 % for the testing set, was reported as 70 and
94 %, respectively.

The authors in [22] demonstrated, for technology
employing TSC probes, that a final period model based
on a neural network allows achieving a prediction error
for the carbon content in the metal within the ranges
of £0.005, +0.010, +£0.015 and +0.020 %, correspond-
ing to 25, 54 71 and 91 % of cases. The analysis con-

ducted indicates that these indicators outperform those
for exponential, cubic models, and the carbon oxida-
tion model based on an analysis of the chemical composi-
tion of exhaust gases.

However, it’s worth noting that in this case, the aver-
age initial value of carbon content was 0.244 % which is
significantly higher than that in the present study.

To optimize the obtained results, future research
can explore options and assess the impact of updating
the training set to adapt the model to changing conditions
during the converter campaign.

- CONCLUSIONS

The accurate prediction of carbon content in the metal
is crucial for effective management during the final smelt-
ing period in a BOF. The findings of this study align with
the results reported in works [21; 22], affirming the fea-
sibility of employing a neural network for predicting
the carbon content in the metal during the final blowing
period in a BOF.

Table 2

Comparison of parameters of training, testing sets and heats without oxygen in the final period

Tabnuya 2. CpaBHeHHe MoOKa3aTesIeii NJIABOK 00y4arolleil, TeCTUPYIOIIeil BLIOOPOK U MJIABOK
0e3 HCIO0/Ib30BAHMSI KHCJI0POJA B 3aK/JII0UHTeJILHbII Nepuos

Set Number of melts ME, % MAE, % RMSE, %
Training set 700 -1.36-1077 0.0044 0.0060
Testing set 232 -1.09-107 0.0043 0.0060
Without O, 330 2.53-10* 0.0040 0.0048
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