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Abstract. Studying the flow stress of various steel grades is one of the key issues for the viable operation of automation systems which support
the production of rolled products with the required precision based on geometrical properties. A knowledge of flow stress is also important
for the design of rolling mill equipment. The properties of flow stress are published mainly in the form of coefficients of various equations (for instance,
the Hansel-Spittel equation). However, these equations are quite often limited in terms of process variables where they provide accessible result.
It also should be taken into account that the existing rolling industry fabricates tens of steel grades, the chemical composition of which can vary
in wide range depending on final thickness of the rolled products, customer requirements, or on the basis of economic considerations. Studies of
the rheological properties of such amount of materials under laboratory conditions is expensive, time and labor consuming and published data
does not provide data completeness. This work demonstrates that, using data from industrial rolling mills and methods of machine learning, it is
possible to obtain data on material rheology with satisfactory precision. This allows laboratory studies to be avoided. Similar studies are possible
due to high intensity of various sensors and instrumentation in modern rolling mills. The results of industrial data were compared with flow stress
measured by Gleeble. On the basis of this comparison the model was trained using gradient boosting in order to consider peculiarities of industrial
production process.
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AnHomayus. ViccnenoBanue CONpOTUBICHHS JeopMaluy pa3IMYHBIX MApoOK CTAJIM SBISETCS OJHMM U3 KJIIOUEBBIX BOIPOCOB JUISl aJIeKBAaTHOM
paboThI CHCTEM aBTOMATHU3aLUH, IO3BOJISIONIEH MOIydaTh IPOKaT ¢ TpeOyeMOi TOUHOCTBIO 0 TEOMETPUUECKHM XapakTepuctukam. Kpome toro,
3HAHUE CONPOTHUBIICHUS Je(OopMalIUK BaKHO TIPU NPOSKTUPOBAHUM 00OPYOBAHUS POKATHBIX CTAHOB. B suTeparype 3HaueHHs CONPOTHUBICHUS
neopmManuy B IOJABISIONIEM OOJBIIMHCTBE CIIydaeB HPUBOAATCS B BHAE KOA(D(UIMEHTOB pPA3IMYHBIX ypaBHEHHH (Harpumep, XeH3es-
Inurrens). Onnaxo 3a4acTyro JaHHbIe GOPMYIIbI HIMEIOT OrPaHMYEHHMS 110 IMaNa30Hy TEXHOJIOTHYECKUX IapaMeTPOB, TIe OHU JIAI0T HPHEMIIEMbIi
pesynbrar. CiefyeT TakKe Y9UThIBaTh, YTO HA COBPEMEHHOM ITPOKATHOM IIPOM3BOJICTBE M3TOTABINBAIOTCS JACCATKH MAapOK CTajel, XUMHYECKUN
COCTaB KOTOPBIX MOXKET BapbUPOBAThCS B MIMPOKOM AMANA30HE B 3aBUCHMMOCTU OT KOHEYHOH TOJIIMHBI IPOKaTa, TPeOOBAHMI 3aKa3yMka MM
HCXOZs M3 HKOHOMMYECKHX cooOpaxceHMH (HauOoliee BBINOJHAS KOMIIO3MIMS JIErMpoBaHMs). VIcciaenoBaHue peosorM4ecKUX CBOMCTB Takoro
KOJIMYECTBA MAaTepHAJIOB B Ja0OPATOPHBIX YCIOBHAX JIOPOTO, JOJITOCPOYHO M TPYAO3aTPATHO, A JINTEPATYPHbIE UCTOYHUKH He 00ecreunBaloT
MOJTHOTHI JJaHHBIX. B paboTe mokazaHo, 4TO, WCIOJB3YS JaHHBIC C IPOMBIIUICHHBIX HMPOKATHBIX CTAHOB M METOABI MAIIMHHOIO OOy4YCHHS,
BO3MO)KHO ITOJTyY€HUE CBEJICHHUI O PEOJIOTUH MaTepHalia ¢ yI0BISTBOPUTEILHON TOYHOCTHIO. DTO MO3BOJISAET U30erarh IPOBEACHHS J1a00PATOPHBIX
ucnbITanuil. [1ono0HbIe nccie0BaHus BO3MOXKHBI OJ1aroiapst BRICOKOH HaChIIEHHOCTH COBPEMEHHBIX IIPOKATHBIX CTAHOB PA3JIMYHBIMU JaTYHKAMU
U cpenctBamMH n3MmepeHuil. [IpoBeneHO cpaBHEHHE pPE3yJbTaTOB IPOMBIIUICHHBIX AAaHHBIX CO 3HAYEHHUSIMU CONPOTHUBICHMs AedopMaruu,
nosy4yeHHbIMH Ha ycranoske Gleeble. Ha ocHOBe TaHHOTO cpaBHEHUsI BHIITOIHSIOCH OOyueHHE MOJIENI HAa OCHOBE I'PaJIMEHTHOro OyCTHHIa s
yuera 0COOCHHOCTEH TeXHOJIOTHYECKOTO MPOoLecca MPU MPOMBIIICHHOM ITPOU3BOJICTBE.

Kaloyesvle caoea: conporuBieHue nedopManuy, pacdeT YCHIMS IPOKATKH, IUHEHHAs perpeccus, MAllMHHOE oOydeHHe, TPaiHCHTHBIH OyCTHHIL,
Gleeble, ucrunHoe HanpspKeHUe, UCTHHHAS Aedopmanus, ypapHeHue Xensens-1nurrens

baazodapHocmu: ViccrnenoBaHust PpOBOAMIMCH B paMKaX IPOrpaMMbl CTPATErHYECKOro akaieMuueckoro auaepcta Pocceuiickoii ®enepanun «Ipuo-
puter-2030» u HayuHoro npoexra IIPOP/CH/HY/22/CI15/26 «Co3naHre HHHOBAIIMOHHBIX HU(POBEIX HHCTPYMEHTOB I IIPUMEHEHUS IIPUKIIA]-
HOT'O MCKYCCTBEHHOTO MHTEJUIEKTa U IPOJBUHYTOIO CTATHCTHYECKOrO aHajIn3a O0JIbIINX JaHHBIX B TEXHOJIOIHUECKHX MPOLECCaX MPOM3BOJCTBA Me-
TaJUTyprUdecKoi IPOTYKIHID).
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aypeus. 2023; 66(1): 71-79. https://doi.org/10.17073/0368-0797-2023-1-70-79

A significant expansion of knowledge about flow
stress of metal under actual industrial conditions can

B INTRODUCTION

The design calculations of rolling equipment and
development of new process modes are based on process
power parameters (PPP), mainly rolling force. In gen-
eral terms, the calculation equations of contact stresses
include directly the flow stress. Therefore, the precision
of its detection influences directly on the PPP calcula-
tion error. Despite the available theoretical and empirical
equations, which describe the influence of temperature,
the strain rate and velocity on flow stress, their preci-
sion is not always acceptable during calculations for
steel of new chemical composition. Therefore, the pre-
cise value of flow stress of steels and alloys of certain
chemical composition should be reasonably determined
by experimental means.

Several determination methods of flow stress are avai-
lable, such as tension, compression, cylinder torsion, and
others. Flow stress determined under compression, ten-
sion, and torsion can be used with certain assumptions
in calculations of contact pressure during rolling. This is
attributed to differences under deformation development,
under temperature conditions, and other factors [1].

Direct determination of flow stress can be established
while rolling. The method of basis pressures can be used
with this aim [2]. However, such an approach is more
labor intensive and requires sufficiently powerful rolling
equipment. In addition, the rolling of one sample at once
and the same deformation provides sufficiently less data
than compression tests, which present data in the range
of true strain from 0 to ~1.

be achieved by using statistic methods of processing
large data arrays obtained from sensors and control sys-
tems of rolling mills. One year of operation of sheet
rolling mill provides information of about two million
passes [3, 4].

Using the above-mentioned values and validating
the results by compression tests (Gleeble), it is possible to
develop calculation procedure of flow stress on the basis
of industrial data without supplementary laboratory stu-
dies.

Modern rolling mills are intensively equipped with
sensors which allow very precise detection of actual pro-
cess parameters. The data obtained is collected at a high
sampling rate, accumulated in files, and can be used for
advanced statistical analysis. It should be mentioned that
due to high scatter of parameters influencing the process,
the data analysis from industrial rolling mills using clas-
sical methods is very difficult. In such cases machine
learning methods are widely applied for data cleaning
and highlighting of key features of the running processes.
In other countries, neural networks are used for forecas-
ting the physical properties of hot rolled thick sheet (flow
stress), rolling force, and other parameters. Using such
models, it is possible to significantly decrease expenses
of studies during development of new products.

For example, in [5] the neural network is used as adap-
tation of the various calculation methods of rolling force
(Sims, Tselikov) in a single rolling mill. The initial data
are both the standard rolling conditions (temperature,
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Table 1

Chemical composition of the considered samples, (wt. %)

Tabnuya 1. XuMH4ecKHi cOCTaB HCC/IeyeMbIX 00pa3ioB, % (1Mo macce)

Steel No. @ Si Mn Cr Mo Ni Nb Ti A%
1" 0.110 | 0.55 | 1.630 - - - - -
2 0.060 | 0.26 | 1.820 | 0.17 - 0.27 | 0.034 | 0.016 | 0.031
3 0.165 | 1.40 | 0.475 0.025 - - - 0.030
4 0.090 | 0.21 | 1.690 - 0.20 | 0.059 | 0.023 | 0.022

*Reference chemical composition for simulation.

compression, rolling geometry, and so on), and the calcu-
lated forces using the aforementioned procedures.

The researchers in [6—8] use machine learning
methods for description of curves obtained using Gleeble.
This approach allows more precise data to be obtained
than by classical approaches.

In [9], the use of general rolling parameters and a fully
connected neural network, the authors successfully fore-
cast rolling force and moment.

In [10 — 14] the simulation of the plastic properties
of various alloys at high temperatures are considered by
means of fully connected neural networks. The features
of this approach are discussed here.

Machine learning is also used for forecasting phase
transformations during rolling and analysis of material
properties, for which analytical dependences were not
developed [15 — 19].

The aim of this work is to determine the thermo-
mechanical coefficients for calculating flow stress
of selected steel on the basis of laboratory and industrial
studies. In order to achieve the formulated target, various
steel grades were analyzed by means of compression and
rolling tests, their rheological properties were determined,
and the model was proposed in accordance with machine
learning methods for calculating coefficients of the Han-
sel-Spittel equation.

©

[l ANALYZED MATERIALS, PROCEDURES
AND EQUIPMENT

Four variants of chemical composition of steels were
considered in this work used for production of rolled
products for pipes, grade K52 — K60. The chemical com-
position of the steels considered is summarized in Table 1.
Steels 1 — 4 are mentioned without grade specification in
order to preserve confidentiality.

For steel 1, the tests on the Gleeble facility were
carried out for basic chemical composition. However,
the data from industrial rolling mill was analyzed using
several variants of chemical composition, the main diffe-
rence being the content of niobium.

Compression test is one of the most popular methods
used to determine rheological properties. This method
allows carry out tests with high strain (about 60 %) and
strain rate up to 20-30 s™' to be carried out. In this work
the compression tests were carried out on the Gleeble
facility. A typical sample was a cylinder with the diameter
of 10 mm and the height of 15 mm.

One drawback of the method is changes in the sample
shape upon deformation from cylindrical to barrel type.
To reduce barrel distortion, a lining made of graphite and
tantalum foils was used between the dies and the sample
(Fig. 1). The samples were tested in the temperature range

Left die

Lining made of graphite
or tantalum foil
Thermocouple

N g
© =

2

/ / 15 mm
Sample
Right die
b c

Fig. 1. External view of the Gleeble 3800 test block (a), strain layout (») and sample for the experiment (c)

Puc. 1. Baemnnii Bun ucnbitarensaoro onoka Gleeble 3800 (), cxema nedopmanuu (b) u odpaserr st IKCriepruMeHTa (¢)
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of 750 — 1150 °C (with the increment of 50 °C) at three
strain rates: 0.1; 1, and 10 s~!. Therefore, 30 tests were
carried out for each steel grade. To obtain reliable results,
a thermal cycle was applied consisting of:

— treatment for solid solution, in order to dissolve car-
bonitride particles;

— heating to 1150 °C;

— preliminary strain (¢ = 0.1);

— holding up to complete static recrystallization;
— cooling to test temperature;

— main strain and quenching (Fig. 2).

As a consequence of tests a set of discrete curves was
obtained: true strain — true stress o(g).

Samples for tests on the Gleeble facility were fabri-
cated from industrial rolled products of the respective
steel grades.

[l RESULTS AND DISCUSSION

Partial test results of uniaxial compression of sam-
ples with the diameter of 10 mm and the height of 15 mm
for steels 2 and 4 at the strain rate of 1 s are shown in
Fig. 3.

The curves obtained can be subdivided into two types.
The first type describe strain comprised simultaneously
of strengthening and softening, and their ratio determine
the form of the curve. At the same time, softening starts
with very little strain dynamic. This tries to restore a previ-
ous state due to redistribution of dislocations. After achie-
ving equilibrium, the stress remains actually the same
with increase in strain degree. The curves of the first type

7,°C !
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0 L >
Treatment Strain tests t, min

for solid

solution

Preliminary

1250 °C, strain

30 min

1150 °C,
e=0.1

Main
strain

Start of complete
static
recrystallization

Fig. 2. Test thermal cycle

Puc. 2. Tepmuueckuii UK UCTILITAHUS

can be observed in a significant part of the considered
range of temperature and strain parameters. For example,
for steel 4 in Fig. 3 — these are the curves at 1050 and
950 °C.

The curves of the second type are obtained due to
low activation energy under the given strain conditions.
Dynamic recrystallization starts after achieving critical
density of dislocations at certain strain. If the dynamic
recrystallization starts before the achievement of equi-
librium state between strengthening and softening, then
the following is observed decrease in stress with strain
increase. The curves of the second type are observed
in the region of higher temperatures and low strain rates.
In Fig. 3, these are the curves at 1150 °C.

As mentioned above, the results of compression tests
on the Gleeble facility are true stress as a function of true
strain. However, this dependence cannot be directly
applied to the calculation of flow stress in strain source
upon rolling due to discreteness of the curves. For correct
use it is required to convert true stress into average stress
using the following equation [20]

200
180
160
140
120
100
80
60
40
20
0
200
180
160
140
120
100
80
60
40
20

True stress, MPa

True stress, MPa

0 0.2 0.4 0.6 0.8 1.0
True strain

Fig. 3. Effect of temperature 1150 (/), 1050 (2), 950 °C (3)
and true strain on true stress of steels 2 (a) and 4 (b)
at a strain rate of 1 s

Puc. 3. Bimsaue temmneparypst 1150 (1), 1050 (2), 950 °C (3)
u nedopMalvi Ha UCTUHHOE HanpsbkeHue craneii 2 (a) u 4 (b)
npu ckopoctu aedopmarmu 1 ¢!
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[ 2 5(8)de

o, ="t (1)
€~ &

where o(¢) is the stress curve obtained on Gleeble facility;
€,, &, are the initial and final value of true strain at the seg-
ment.

Also, for ease of calculation of rolling modes, the true
strain can be converted into a relative one using the fol-
lowing equation

g, =1—c* )

Figure 4 illustrates the curves before and after conver-
sion.

The influence of strain degree, strain rate and tempera-
ture obtained in the form of curves are often described by
the Hansel-Spittel equation [1]

c=A4,4,4,e"ume™’c,, 3)

where 4., 4,,4,,m ,m,,m, are the empirical coefficients;
e is the relative strain; u is the strain rate; 7 is the metal
temperature; o, is the average flow stress at basic test
parameters (in this work taken equal to € =10 %, u = 1
s, T=900 °C).

To eliminate the influence of variations, all the curves
were reduced to one basis in terms of strains. The con-
version procedure is illustrated in Fig. 5. On the basis
of the obtained data linear regression analysis was carried
out for Eq. (3), and the result of the approximation was
the coefficients m, = In(4,4,4,0;), m,, m,, m,

120

100

o)
S

Stress, MPa
o)
S

N
S

N
S

0 0.2 0.4 0.6 0.8 1.0

Strain

Fig. 4. Comparison of true (/) and average (2) stresses
of flow of steel 2 at 1150 °C and strain rate of 1 s!

Puc. 4. CpaBHeHHe KpUBBIX HCTHHHOTO (/) U cpexHero (2)
HarpsDKSHUs! TedeHust cTanu 2 npu temreparype 1150 °C
u ckopocty aeopmarmn 1 ¢!

Inc =In(4,4,4,emu™e ™’ c,); @)
Inc =In(4,4,4,6,) + m Ing + m)Inu—m,T. (5)

As a result, the following equations were obtained for
the considered steel grades:

= 0.2864,,0.1001 ,~0.002747 .

Oyeer ] = 2245¢ u e ; (6)
— 0.3334,,0.1097 ,~0.002887.

Oieel 2 2827¢ u e ; @)
= 0.2544,,0.1119 ,—0.00262T .

Oyeer3 — 1818¢ u e ; (8)

True strain . . Strain with the
from —> Relative strain by Eq. (2) —> increment of 0.01
Gleeble &
.[ o(e)de Average stress
’ by Eq. (1), MPa
€l o Average stress
True stress I o(e)de after
from c, = l approximation
Gleeble, MPa €~ regression, MPa
o +
| A B | ¢ D E | F G | H
1 0 12,12574 0 0 0 0 0
2 8E-05 12,36211 0,000980 8E-05 12,24393 0,01 49,35890
3 | 0,00017 11,80127 0,002067 0,00017 12,15804 0,02 59,00201
4 | 0,00028 12,44327 0,003400 0,00028 12,14399 0,03 65,93980
=i 0,00025 11,28970 0,003519 0,00029 12,13442 0,04 70,93313
6 0,00035 11,83888 0,004213 0,00035 12,03668 0,05 74,79515
7 | 0,00041 11,89151 0,004925 0,00041 12,01158 0,06 77,91432
8 0,00052 11,94710 0,006236 0,00052 11,99206 0,07 80,53330
9  0,00053 11,40753 0,006353 0,00053 11,98613 0,08 82,79469
10 0,00053 11,47177 0,006353 0,00053 11,98613 0,09 84,80606
11| 0,00053 12,03976 0,006353 0,00053 11,98613 0,10 86,57971
12| 0,00086 11,70751 0,010271 0,00086 11,94296 0,11 87,91336
13 0,00088 11,78279 0,010506 0,00088 11,93846 0,12 89,27686
14 0,00064 12,06498 0,007644 0,00064 11,94393 0,13 90,75065

Fig. 5. Conversion algorithm of true stress — true strain to average flow stress — strain

Puc. 5. AJIFOpI/ITM repecueTa KpUBbIX UCTUHHOC HAIIPSIKEHUE — UCTUHHAs L[e(bopMaum{ B CpeAHEC HAIIPSXKCHUC TCUCHUS — L{e@)opMaum{
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o] = 264980'3142M0'0989€_0'00285T.

steel 4 (9)

Another possible method of obtaining data on flow
stress is to analyze results from industrial rolling mills.
In comparison with laboratory conditions, the industrial
environment can entail higher strain degrees, complicated
strain—stress states, significant temperature heterogeneity
with large size of workpiece, non-standard friction condi-
tions and other factors, making obtaining of precise results
more difficult.

In this paper it is proposed to use reverse calcula-
tions of flow stress from rolling force using classical
approaches [2], based on data from industrial rolling
mill 5000. Then, to calculate the coefficients of the equa-
tion of the Hansel-Spittel equation. The calculations were
based on each separate pass (the data from more than
310 thousand passes were studied).

This work analyzed only roughing stage. The roll-
ing width was from 2500 to 4500 mm, and the thickness
was from 50 to 350 mm. The remaining parameters in
the learning sampling were varied as follows: strain from
0.02 to 0.27; strain rate from 0.42 to 5.93 s™!, temperature
from 920 to 1150 °C.

The flow stress was calculated using the data from
rolling mill (thickness, compression, diameter of rolls,
temperature and other process variables). This was based
on a procedure similar but inverse to calculations of roll-
ing force according to Tselikov [2]. Based on the example
of steel 1, let us consider the form of the dependence
obtained in comparison with data from the Gleeble facil-
ity (Fig. 6).

At compressions more than 10 %, the properties deter-
mined by the two methods are identical, herewith, up
to 10 % the flow stress from the rolling mill significantly
exceed the data from Gleeble facility. We believe that
this can be attributed to the features of recrystallization
of the austenitic grain, as well as to errors in back calcula-
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tion of flow stress when classical theories of rolling are
used. It should be mentioned that this effect is observed
not for all variants of steel grades but mainly for those
containing niobium.

To consider this, a model was developed on the basis
of gradient boosting (Catboost library). As a learning sam-
pling, the data for steel 1 was taken for different chemical
compositions (7 variants in total). 15 features were used:
chemical composition, compression; time before passes;
strain rate; rolling thickness; temperature and number
of passes. The relative difference between the calcu-
lated flow stress from the rolling mill and the data from
the Gleeble facility was taken as the targeted feature.
The values obtained were subdivided into testing and
learning samplings in the ratio of 75 — 25 %.

The RMSE (root mean square error) was taken as
the loss function. In addition, the R2 metrics, coeffi-
cient of determination, was used for quality estimation
of the obtained forecasted data.

The model was traoned by selection of optimum
parameters using grid_search, and carried out as follows:

— ‘learning_rate’: [0.05, 0.1, 0.3];

— ‘depth’ (tree depth, that is, number of partitions
before forecast): [4, 6, 8, 10];

— ‘12 _leaf reg’ (coefficient of regularization 12): [4, 6, §].

The best parameters were as follows: ‘depth’ = 8§,
‘learning rate’ = 0.3, ‘12 leaf reg’ = 6. The obtained pre-
cision of the model by the RMSE metrics is 3.2 MPa,
R2 0.97.

The most important features are illustrated in Fig. 7.
As can be seen, the most important are the features directly
influencing of strengthening and softening, namely: strain,
niobium content, strain rate.

The model performance was then tested for steels 2 — 4.
Dependences of flow stress based on data from rolling mill
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Fig. 6. Comparison of calculated flow stress using industrial data (A)
with data from Gleeble facility (O) for steel 1 in two versions — with (a) and without niobium (b)

Puc. 6. CpaBHeHHE pacueTHOTO CONMPOTUBICHNUS Ae(pOPMALNH IIPU MOMOIIH IPOMBIIIICHHBIX JaHHBIX (A)
u ¢ ycranosku Gleeble (O) aus cranu 1 B 1ByX Bapuantax — ¢ HHooueM (a) u 6e3 uuodus (b)
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Fig. 7. Significance level of the model features

Puc. 7. YpoBeHb 3HAYMMOCTH MTPU3HAKOB JISI MOJCTTH

before and after application of the model to the mentioned
steels are shown below.

As can be seen in Fig. 8 and Table 2, application
of the model significantly improves the accuracy of deter-
mining flow stress. For steel 2, the RMSE parameter
decreased by 6.5 times, and the R2 parameter from nega-
tive value increased to 0.94. For steels 3 and 4, the result
was less precise — RMSE: 5.37 and 5.88 MPa, R2: 0.89
and 0.85.

On the basis of the data obtained, the coefficients
of the Hansel-Spittel equation were calculated. Com-

parison with the data from the Gleeble is shown in
Table 3. The coefficients differ mainly due to the features
of description method of stress — strain curves. Therefore,
it would be reasonable to compare not single coefficients
but their combined action, that is, calculated flow stress.
As can be seen in Table 2, the absolute calculated values
by two procedures differ by 3 — 7 %.

Therefore, application of the obtained coefficients
provides satisfactory precision of determination of flow
stress in the above-mentioned range of process variables.
The models of flow stress obtained by statistical process-
ing of industrial data can be applied for engineering cal-
culations of PPP.

[ ConcLusiOoNs

The flow stress of four steel grades with various chemi-
cal compositions measured by Gleeble was compared
with the measurements at rolling mill 5000.

The discrete curves obtained in the experiments were
approximated, and the coefficients of the Hansel-Spittel
equation were determined.

It was demonstrated that upon calculation of flow
stress on the basis of industrial data at compression less
than 10 %, the data does not agree with those obtained
at the Gleeble facility.

In order to account this phenomenon, it was pro-
posed to use the machine learning model based on gradi-

Table 2

Comparison of the determination precision of flow stress before and after application of the model

Ta6ﬂuua 2. CpﬁBHeHﬂe TOYHOCTH ONpeaeIeHUs CONMPOTUBJICHUA ne(l)opMauml A0 " IM0CJI€ UHCITOJIb30BaAHUA MO/1€C/IN

Steel | Before application of the | Before application | After application of the | After application
No. RMSE model, MPa of the R2 model RMSE model, MPa of the R2 model
2 20.40 -8.850 3.74 0.938
9.15 0.574 5.37 0.887
4 17.20 -2.170 5.88 0.848

Table 3

Comparison of the HenselSpittel coefficients according to the data obtained from MillS000 and from Gleeble facility

Tabnuya 3. CpaBHenune ko3¢ dpuuuentoB Xenseas-llnurresns mo 1aHHbIM, MOTy4YeHHBIM co cTaHa S000 u ¢ ycranoBku Gleeble

Steel No. const
2 (industrial data) 2607
2 (Gleeble data) 2827
3 (industrial data) 1547
3 (Gleeble data) 1818
4 (industrial data) 2321
4 (Gleeble data) 2649

k1 k2 k3
0.345 0.143 —0.00279
0.333 0.109 —0.00288
0.163 0.184 —0.00275
0.254 0.111 —0.00262
0.276 0.166 —0.00286
0314 0.098 —0.00285
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Fig. 8. Flow stress as a function of compression for steel 2 (a, b), 3 (¢, d), 4 (e, f)
before (a, ¢, e) and after (b, d, /') application of the model:
A — industrial data; O — data from the Gleeble installation

Puc. 8. 3aBucumocTs conpoTtuBiIeHUs Aedopmariu ot odxarus it cramu 2 (a, b), 3 (¢, d), 4 (e, f)
1o (a, ¢, e) unocne (b, d, /) npuMEHEHHs] MOAECIH:
A — IpoMBIIIUTIeHHBIE aHHbIe; O — naHHble ¢ ycraHoBKH Gleeble

ent boosting (Catboost library) . The best model param-
eters were as follows: ‘depth’ = &, ‘learning_rate’ = 0.3,
‘12 _leaf reg’” = 6. The model learning was based on
industrial and laboratory data of one and the same steel
grade with several variants of chemical composition.
The obtained precision of the model with test selection by
the RMSE metrics equals to 3.2 MPa, R2 is 0.97.

The use of this model allowed to achieve the precision
of flow stress determination to be increased significantly.
For steel 2, the RMSE parameter decreased by 6.5 times.
The R2 parameter from negative, increased to 0.94. For
steels 3 and 4, the results were less precise — RMSE: 5.37
and 5.88 MPa, R2: 0.89 and 0.85.

A comparison of the industrial values of flow stress
with the data obtained by Gleeble demonstrated close
results and the capability to use the described approach to
analyze steel flow stress based on industrial data.
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