Информационные технологии и автоматизация в черной металлургии INFORMATION TECHNOLOGIES AND AUTOMATIC CONTROL IN FERROUS METALLURGY

Оригинальная статья УДК 536.2.023:519:669:699.86 DOI 10.17073/0368-0797-2022-1-57-65

Метод определения температуропроводности и коэффициента теплопроводности по температурам поверхности пластины как полуограниченного тела

А.К.Соколов

Ивановский государственный энергетический университет имени В.И. Ленина (Россия, 153003, Иваново, ул. Рабфаковская, 34)

Аннотация. Проведено исследование численно-аналитической модели полуограниченного тела, которая использовалась для одновременного определения теплофизических характеристик (ΤΦΧ): температуропроводности *a* и коэффициента теплопроводности λ материала, по которым легко определить объемную теплоемкость с. Распределение температур по сечению пластины в конце расчетного интервала времени τ описано степенной функцией, показатель которой *n* зависел от числа Фурье Fo. Величины ТФХ рассчитывались по динамике изменения температур поверхностей пластины $T(x_n = R_n, \tau)$ и $T(x_n = 0, \tau)$ толщиной R_n , нагреваемой при граничных условиях второго рода q = const. По температуре $T(x_n = 0, \tau)$ определялся момент времени τ_v , в который температурное возмущение достигало адиабатной поверхности $x_n = 0$ ($T(R_n, \tau_v) - T_n(0, \tau = 0) = 0,1$ К). Вычисления ТФХ (a_r и λ_r) выполнялись по формулам, параметры которых находились решением нелинейной системы из трех алгебраических уравнений путем подбора числа Фурье, соответствующего т.. Исследование трудоемкости и точности расчета ТФХ выполнено по тестовым (исходным) температурным полям пластины из огнеупорного материала, рассчитанным методом конечных разностей. Зависимости ТФХ от температуры $a_{\mu}(T)$, $\lambda_{\mu}(T)$ и $c_{\mu}(T)$ задавались полиномами. Температуры пластины толщиной $R_n = 0,04$ м с начальными условиями $T_{\mu} = T(x_n, \tau = 0) = 300, 900, 1200, 1800$ К $(0 \le x_n \le R_n)$ были рассчитаны при удельном потоке теплоты q = 5000 Вт/м². Время нагрева до $\tau_{\rm k}$ составляло 105 – 150 с. Среднемассовая температура пластины $T_{\rm ep,\, n\pi}$ за время т. увеличивалась на 5 – 11 К. Значения ТФХ восстанавливались решением обратной задачи теплопроводности для десяти моментов времени $\tau_{i+1} = \tau_i + \Delta \tau$. Среднеарифметические отклонения ТФК ($T_{cp, \pi n}$) от исходных значений для расчетов при $T_{\mu} = 300, 900, 1200, 1800$ К составили менее 2,5 %. Установлено, что значения a_{τ} и λ_{τ} , полученные для моментов времени τ_i , практически постоянны, следовательно возможен упрощенный расчет $a_{\tau,o}$ и $\lambda_{\tau,o}$ только по значениям температур $T(R_{\pi}, \tau_{\kappa})$ и $T(0, \tau_{\kappa})$ в конце нагрева. Значения $a_{\tau,o}$ и $\lambda_{\tau,o}$, которые были рассчитаны сразу для всего времени нагрева, отличались от исходных значений принятых условий теплообмена примерно на 2 %. Параметры простых алгебраических формул для расчета $a_{_{\rm L}\,_0}$ и $\lambda_{_{\rm L}\,_0}$ находились решением системы из трех нелинейных уравнений n = n(Fo), $a_{\tau,0} = a(T_u, T(R_u, \tau_k), R_u, n, \tau_k)$, Fo = Fo $(a_{\tau,0}, R_u, \tau_k)$ и выражения для $\lambda_{\tau,0} = \lambda(R_u, q, n, T_u, T(R_u, \tau_k))$. Предложенный метод значительно упрощает решение обратной задачи теплопроводности.

Ключевые слова: полуограниченное тело, огнеупор, обратная задача температуропроводности, постоянный поток теплоты, адиабата, температуропроводность, коэффициент теплопроводности, численный эксперимент

Для цитирования: Соколов А.К. Метод определения температуропроводности и коэффициента теплопроводности по температурам поверхности пластины как полуограниченного тела // Известия вузов. Черная металлургия. 2022. Т. 65. № 1. С. 57–65. https://doi.org/10.17073/0368-0797-2022-1-57-65

Original article

METHOD FOR DETERMINING THE THERMAL DIFFUSIVITY AND THERMAL CONDUCTIVITY COEFFICIENT BY TEMPERATURES OF PLATE SURFACE AS A SEMI-BOUNDED BODY

A. K. Sokolov

Ivanovo State Power University named after V.I. Lenin (34 Rabfakovskaya Str., Ivanovo 153003, Russian Federation)

Abstract. The studied numerical and analytical model of a semi-bounded body is used to simultaneously determine the thermophysical characteristics (TFC): thermal diffusivity a_i and thermal conductivity coefficient λ_i of the material which make it easy to determine the volumetric heat capacity c_i . Temperature distribution over the plate cross-section at the end of the calculated time interval τ is described by a power function, its

exponent *n* depends on the Fourier number Fo. The values of TFC were calculated from the dynamics of changes in surface temperatures $T(x_p = R_p, \tau)$ and $T(x_p = 0, \tau)$ of the plate with a thickness R_p heated under boundary conditions of the second kind q = const. The temperature $T(x_p = 0, \tau)$ was used to determine the time moment τ_e , at which the temperature perturbation reached the adiabatic surface $x_p = 0$ ($T(R_p, \tau_e) - T_b(0, \tau_e = 0) = 0.1$ K). Calculations of TFC (a_i and λ_i) were performed using formulas whose parameters were found by solving a nonlinear system of three algebraic equations by selecting the Fourier number corresponding to τ_e . The author studied the complexity and accuracy of TFC calculation using the test (initial) temperature fields of a plate made of refractory material by the finite difference method. Dependences of TFC on the temperature $a_i(T)$, $\lambda_i(T)$ and $c_i(T)$ were set by polynomials. Temperatures of the plate with a thickness of $R_p = 0.04$ m with initial conditions $T_b = T(x_p, \tau = 0) = 300$, 900, 1200, 1800 K ($0 \le x_p \le R_p$) were calculated for a specific heat flow q = 5000 W/m². The heating time to τ_e was 105 - 150 s. The average mass temperature $T_{m,pl}$ of the plate during the τ_e increased by 5 - 11 K. The TFC values were restored by solving the inverse thermal diffusivity problem for 10 time points $\tau_{i+1} = \tau_i + \Delta \tau$. The arithmetic mean deviations of TFC ($T_{m,pl}$) from the initial values for calculations at $T_b = 300$, 900, 1200, 1800 K were less than 2.5 %. It was established that the values of a_i and λ_i obtained for the time moments t_i are practically constant, therefore, a simplified calculation of $a_{i,o}$ and $\lambda_{i,o}$ is possible only from the values of temperatures $T(R_p, \tau_e)$ and $T(0, \tau_e)$ at the end of heating. The values of $a_{i,o}$ and $\lambda_{i,o}$, which were calculated immediately for the entire heating time, differed from the initial values of the accepted heat exchange conditions by abo

Keywords: semi-bounded body, refractory, inverse problem of thermal diffusivity, constant heat flow, adiabatic, thermal conductivity, coefficient of thermal conductivity, numerical experiment

For citation: Sokolov A.K. Method for determining the thermal diffusivity and thermal conductivity coefficient by temperatures of plate surface as a semi-bounded body. Izvestiya. Ferrous Metallurgy. 2022, vol. 65, no. 1, pp. 57–65. (In Russ.). https://doi.org/10.17073/0368-0797-2022-1-57-65

Теплофизические характеристики (ТФХ) (температуропроводность, коэффициент теплопроводности и теплоемкость) огнеупорных и теплоизоляционных материалов используются при моделировании температурных полей в элементах оборудования, ограждениях печей и других теплотехнологических и теплоэнергетических установок. Они в значительной степени определяют точность расчета температурных полей для оценки безопасности оборудования и технико-экономических показателей установок.

Процедура определения ТФХ материалов, как правило, включает проведение теплофизического эксперимента и определение зависимости их от температуры решением обратных задач теплопроводности.

Совершенствованием методов определения ТФХ занимаются многие коллективы отечественных и зарубежных ученых.

Обзор и анализ методов определения температуропроводности по нестационарным температурным полям дан в монографиях [1 – 4]. Цитирование многих работ с решениями обратных задач теплопроводности представлены в [4, 5].

В работах [1, 5 – 7] описаны методики определения теплофизических свойств материалов, применяемых в металлургии и строительстве.

Значительная часть известных методов [1 – 5] требует уникальных технических устройств, довольно строгого соблюдения граничных условий теплообмена и использования сложного математического аппарата (специальных функций, конечных элементов, процедур оптимизации и приближения, решения систем дифференциальных и алгебраических уравнений и др.). Для применения сложных методов расчета необходима специальная физико-математическая подготовка, которую обычно не получают выпускники технических специальностей университетов. Основными критериями оптимальности методов определения ТФХ можно считать следующие:

 малая трудоемкость теплофизического эксперимента (простота установки и управления режимом нагрева, минимум точек измерения, исключение точек измерения внутри тела);

 простота метода решения обратной задачи теплопроводности, доступная инженеру теплотехнику;

 возможность комплексного определения нескольких ТФХ по результатам обработки одного температурного поля.

Раздельное определение одной из ТФХ, например, коэффициента теплопроводности λ [8 – 11], позволяет упростить проведение эксперимента и решение обратной задачи теплопроводности. Одновременное (комплексное) определение нескольких ТФХ, например, коэффициента теплопроводности λ и теплоемкости или λ и температуропроводности [12 – 25] требует большего количества измеряемых параметров в эксперименте при незначительном усложнении вычислительного процесса.

Указанные критерии оптимальности обуславливают развитие методов определения ТФХ через процесс решения обратных задач теплопроводности. Например, одношаговый GPS и неитеративная оценка теплопроводности без внутренних измерений [10, 11], использование постоянной мощности при тепловом воздействии [12] или аппроксимирующей функции, описывающей распределение температуры в материале [15], применение бессеточных методов [17]. В большей части упомянутых работ [8 – 25] для оценки точности определения ТФХ используются численные, а не физические эксперименты.

В статье [26] предложен и исследован метод, который в значительной степени удовлетворяет названным критериям оптимальности. Решение обратной задачи теплопроводности основано на численно-аналитической модели полуограниченного тела, разработанной в [26-29].

Простоту процедур определения ТФХ в работе [25] характеризуют следующие показатели. При проведении теплофизического эксперимента измерения температур достаточно проводить только на поверхностях пластины, а расчет ТФХ выполнять по простым алгебраическим формулам. В случае нагрева исследуемого материала пластины постоянным потоком теплоты *q*, Вт/м² можно по одному температурному полю пластины, как полуограниченного тела, определять комплекс ТФХ: температуропроводность $a_{\rm r}$, м²/с, коэффициент теплопроводности $\lambda_{\rm r}$, Вт/(м·К), а по ним – теплоемкость $c_{\rm r} = \frac{\lambda_{\rm r}}{a_{\rm r}}$, Дж/(м³·К).

Тестирование метода выполнено в [26] по температурному полю пластины, нагреваемой при граничных условиях третьего рода, при которых поток теплоты изменялся. Поэтому по динамике температур на поверхностях пластины $T(x = R_n, \tau)$ и $T(x = 0, \tau)$, где R_n – толщина пластины, м; τ – время, с, рассчитывалась только температуропроводность a_r .

В предлагаемой статье дано описание схемы нагрева пластины потоком теплоты заданной величины и примеры расчета температуропроводности $a_{\rm T}$ и коэффициента теплопроводности $\lambda_{\rm T}$ по динамике температур на поверхностях пластины $T(x = R_{\rm n}, \tau)$ и $T(x = 0, \tau)$ и потоку теплоты q. Формулы, по которым выполнены тестовые расчеты, выведены и приведены в [26].

Схема организации теплообмена в пластине, для материала которой следует определить ТФХ, показана на рис. 1. В пластине с исследуемым материалом показаны два расчетных слоя: *1* – прогретый и *2* – не прогре-

Рис. 1. Схема теплообмена в пластине толщиной R_n , нагреваемой потоком теплоты q = const, у которой измеряются температуры поверхностей $T(x_n = R_n, \tau)$ и $T(x_n = 0, \tau)$

Fig. 1. Scheme of heat exchange in a plate with thickness R_p heated by heat flow q = const at which the surface temperatures $T(x_p = R_p, \tau)$ and $T(x_p = 0, \tau)$ are measured

тый. В конце эксперимента толщина не прогретого слоя будет равна нулю. Пластина 3 с большей термической массивностью используется для создания адиабатных условий на поверхности $x_n = 0$ [26].

Датчики температуры, например, термопары, установлены на поверхностях пластины $x_n = R_n$ и $x_n = 0$. Перед началом эксперимента в обеих пластинах необходимо задать начальную температуру $T_{\rm H} = T(x_n, \tau = 0)$ ($0 \le x_n \le R_n$), для которой будут рассчитываться ТФХ.

Нагрев пластины должен осуществляться постоянным потоком теплоты q = const заданной мощности. Такой поток можно создать электронагревателем с регулируемой мощностью. Для исключения потерь теплоты в окружающую среду целесообразно использовать охранные нагреватели [30]. В процессе нагрева толщина прогреваемого слоя *l* будет увеличиваться. Как только температура на границе между пластинами l + 2 и 3 $T(x_n = 0, \tau) = T_0(\tau)$ превысит начальную $T_{\rm H}$, например на $\Delta T = 0,1$ К, температурное возмущение в рабочей пластине достигнет плоскости сопряжения $x_n = 0$, эксперимент закончится $\tau = \tau_k$.

По одному экспериментальному нагреву при начальном условии $T(x_n, \tau = 0) = T_H(0 \le x_n \le R_n)$ можно рассчитать среднеинтегральные значения a_T и λ_T только при одной температуре $T \approx T_H$. Для получения табличных зависимостей $a_T(T)$ и $\lambda_T(T)$ потребуется несколько опытов с другими начальными условиями, поэтому перед каждым следующим экспериментом в обеих пластинах необходимо установить (термостатированием) другое значение температуры T_μ .

Процедуру определения температуропроводности $a_{\rm T}$ коэффициента теплопроводности $\lambda_{\rm T}$ рассмотрим на примере их расчета по температурам поверхности пластины $R_{\rm n} = 0,04$ м, которая была прогрета удельным потоком теплоты q = 5000 Вт/м² от $T_{\rm H} = T(X, \tau = 0) = 1800$ К. Измерения выполнялись для моментов времени $\tau_i = 0, 11, 22, 33, \ldots$ с. Значения температуры обогреваемой поверхности составили $T_1(\tau_i) = T(x = 1, \tau_i) = 1800,0;$ 1808,4; 1811,8; 1814,4; ... К. Конечное время эксперимента $\tau_{\rm K}$ определено по достижению $T(0, \tau_{\rm K}) = 1800,1$ К равным $\tau_{\rm K} = 105$ с.

Выполним расчет для первых интервалов времени.

1. Вычислим толщину прогретого слоя R_1 для $\tau_1 = 11$ с:

$$R_{\rm I} = R_{\rm fr} \left(\frac{\tau_{\rm I}}{\tau_{\rm k}}\right)^{-2} = 0,04 \cdot \left(\frac{11}{105}\right)^{-2} = 0,01295 \text{ m}.$$

2. Определим коэффициенты аппроксимации функции распределения температуры T(X) по сечению прогретого слоя R_1 :

$$T(X) = a_0 + a_1 X^n, \ X = \frac{x}{R},$$
(1)

$$a_0 = T_{\rm H} = 1800, a_1 = T_1(\tau_{i+1}) - T_{\rm H} = 1808, 4 - 1800, 0 = 8, 4 \,{\rm K}$$

3. Решим нелинейную систему из трех уравнений, которые описывают взаимосвязи параметров n, R и Fo с известной из эксперимента функцией $T_1(\tau)$:

$$n(Fo) = 8,2052 - 82,74Fo,$$
 (2)

$$a_{\rm T} = \frac{a_0 + \frac{a_1}{n+1} - T_{\rm cp, \, HH}}{na_1 \frac{\Delta \tau}{R^2}} = \frac{1800 + \frac{8,4}{n+1} - 1800}{n \cdot 8,4 \cdot \frac{11-0}{0.01295^2}}; \quad (3)$$

Fo =
$$a_{\rm T} \frac{\tau_1}{R^2} = a_{\rm T} \cdot \frac{11}{0.01295^2}$$
, (4)

где $a_{\rm T}$ – температуропроводность, м²/с; n – показатель степени в уравнении (1); $T_{\rm cp,\, ни}$ – средняя температура слоя R в начале интервала $\Delta \tau_1$ (в данном случае $T_{\rm cp,\, ни} = T_{\rm cp}(\tau_{i=0} = 0) = T_{\rm H} = 1800$ K); R – текущая толщина прогретого слоя, м; Fo – число Фурье.

Установлено, что нелинейную систему целесообразно решать путем итерационного подбора числа Fo для расчетного интервала времени. Для нахождения Fo с точностью 0,0001 использовалась функция «Сервис»/«Подбор параметра» Microsoft Excel. Решением системы уравнений при задании первого приближения было получено число Fo = 0,0516, по которому определены:

$$n = n(Fo) = 8,2052 - 82,74 \cdot 0,0516 = 3,9338 \text{ и}$$
$$a_{T} = \frac{1800 + \frac{8,4}{3,9338 + 1} - 1800}{3,9338 \cdot 8,4 \cdot \frac{11 - 0}{0,01295^{2}}} = 7,851 \cdot 10^{-7} \text{ м}^{2}/\text{с}$$
(проверка Fo = 7,851 \cdot 10^{-7} \cdot \frac{11}{0,01295^{2}} = 0,0516).

4. Коэффициент теплопроводности $\lambda_{_{\rm T}}$ можно рассчитать по формуле

$$\lambda_{\rm T} = q \frac{R_{\rm I}}{na_{\rm I}} = 5000 \cdot \frac{0.01295}{3.9338 \cdot 8.4} = 1,960 \; {\rm Bt/(M \cdot K)}.$$
 (5)

5. Рассчитаем для
 $\tau_1 = 11$ среднемассовую температуру слоя
 $R_1 = 0,01295$:

$$T_{\rm cp, 1} = a_0 + \frac{a_1}{n+1} = 1800 + \frac{8,4}{3,9338+1} = 1801,7 \text{ K}$$
 (6)

и среднемассовую температуру всей пластины, включая прогретый R_1 и непрогретый $R_{_{\rm HII}} = (R_{_{\rm II}} - R_1)$ слои:

$$T_{\rm cp, \, nn} = \frac{T_{\rm cp, \, 1}R_{\rm l} + T_{\rm H}(R_{\rm n} - R_{\rm l})}{R_{\rm n}} =$$
$$= \frac{1801, 7 \cdot 0,01295 + 1800(0,04 - 0,01295)}{0,04} =$$
$$= 1800,55 \text{ K}$$
(7)

 $(T_{\rm cp,\,nn}$ – необязательный параметр, значение $T_{\rm cp,\,nn}(\tau = \tau_{\kappa})$ можно использовать для контроля правильности расчета по балансу теплоты, так как при $\tau = \tau_{\kappa}$ должно выполнится равенство $T_{\rm cp,\,nn} = T_{\rm cp,\,\kappa}$).

6. Все параметры для первого расчетного интервала времени вычислены. Подготовим исходные данные для расчета второго интервала нагрева. Определим толщину прогретого слоя в конце второго интервала времени $\tau_2 = 22 \text{ c } R_2 = 0,04 \cdot \left(\frac{22}{105}\right)^{-2} = 0,01831 \text{ м и среднемассо$ $вую температуру слоя } R_2$ в начале второго интервала

вую температуру слоя R_2 в начале второго интервала времени:

$$T_{\rm cp, \, hu, \, 2} = \frac{T_{\rm cp, \, 1}R_1 + T_{\rm H}(R_2 - R_1)}{R_2} = \frac{1801, 7 \cdot 0,01295 + 1800(0,01831 - 0,01295)}{0,01831} = 1801,2 \text{ K}.$$

Заметим, что расчетные среднемассовые температуры в конце первого интервала и начале второго интервала не равны, так как они относятся к разным толщинам прогретых слоев.

Расчеты второго и последующих интервалов нагрева выполняются аналогично, начиная с п. 2.

7. Рассчитаем коэффициенты a_0 и a_1 для конца второго интервала $\tau_2 = 22$ с, $\Delta \tau_2 = 22 - 11 = 11$ с:

$$a_0 = T_{_{\rm H}} = 1800, a_1 = T_1(\tau_2) - T_{_{\rm H}} =$$

= 1811,8 - 1800,0 = 11,8 K.

8. Нелинейная система из трех уравнений

$$n(\text{Fo}) = 8,2052 - 82,74\text{Fo};$$

$$a_{\text{T}} = \frac{a_0 + \frac{a_1}{n+1} - T_{\text{ср. ни}}}{na_1 \frac{\Delta \tau}{R^2}} = \frac{1800 + \frac{11,8}{3,9180 + 1} - 1801,2}{3,9180 \cdot 11,8 \cdot \frac{22 - 11}{0,01831^2}};$$

$$\text{Fo} = a_{\text{T}} \cdot \frac{11}{0,01831^2}$$

имеет решение при Fo = 0.0518.

Определим n(Fo) и температуропроводность a_{T} в конце второго интервала, зная Fo = 0,0518:

$$n(\mathrm{Fo}) = 8,2052 - 82,74 \cdot 0,0518 = 3,9180,$$

$$a_{\rm T} = \frac{a_0 + \frac{a_1}{n+1} - T_{\rm cp, Hu}}{na_1 \frac{\Delta \tau}{R^2}} = \frac{1800 + \frac{11.8}{n+1} - 1801.2}{n \cdot 11.8 \cdot \frac{22 - 11}{0.01831^2}} = 7,88 \cdot 10^{-7}.$$

9. Коэффициент теплопроводности λ_{r} по формуле (5)

$$\lambda_{\rm T} = q \frac{R_2}{na_1} = 5000 \cdot \frac{0,01831}{3,9180 \cdot 11,8} = 1,98 \text{ BT/(M} \cdot \text{K}).$$
 (8)

10. Рассчитаем для $\tau_2 = 22$ с среднемассовую температуру слоя $R_2 = 0,01831$ с по уравнению (6)

$$T_{\text{cp, 2}} = a_0 + \frac{a_1}{n+1} = 1800 + \frac{11.8}{3,9180+1} = 1802,4 \text{ K}$$

и среднемассовую температуру всей пластины

$$T_{\rm cp, \, n\pi} = \frac{T_{\rm cp, \, 2}R_2 + T_{\rm H}(R_{\rm \pi} - R_2)}{R_{\rm \pi}} =$$
$$= \frac{1802, 4 \cdot 0,01831 + 1800(0,04 - 0,01831)}{0,04} =$$
$$= 1801,1 \, \text{K}. \tag{9}$$

Определим исходные данные для расчета третьего интервала нагрева $\tau_2 = 33$ с.

Рассчитаем толщину прогретого слоя в конце третьего интервала $R_3 = 0,04 \cdot \left(\frac{33}{105}\right)^{-2} = 0,02242$ и среднемассовую температуру слоя R_3 в начале третьего интервала времени

$$T_{\rm cp, \, hu, \, 3} = \frac{T_{\rm cp, \, 2}R_2 + T_{\rm h} \left(R_3 - R_2\right)}{R_2} =$$

$$=\frac{1802, 4 \cdot 0,01831 + 1800(0,02242 - 0,01831)}{0,02242} =$$
$$= 1802,0 \text{ K}.$$

Расчеты третьего и последующих интервалов нагрева выполняются аналогично.

Для оценки точности метода расчета $a_{\rm T}$ и $\lambda_{\rm T}$ решением обратной задачи теплопроводности проведено его тестирование. Для тестирования использовались заранее рассчитанные температурные поля при потоке теплоты q = const огнеупорного материала с заданными теплофизическими свойствами $a_{\rm H}$, $c_{\rm H}$, $\lambda_{\rm H}$:

$$\begin{split} \lambda_{_{\rm H}}(T) &= 0,7416 + 0,00069T, \, {\rm Bt/(M\cdot K)}; \\ c_{_{\rm H}}(T) &= 2100\cdot(7,688 + 0,00025T), \, {\rm Jm/(M^3\cdot K)}; \\ a_{_{\rm H}}(T) &= 4,701\cdot 10^{-7} + 2,347\cdot 10^{-10}T - 3,624\cdot 10^{-14}\,T^2\,\,{\rm m^2/c}. \end{split}$$

Расчет температурного поля неограниченной пластины $R_{\rm n} = 0,04$ м с теплофизическими свойствами $a_{\rm n}$, $c_{\rm n}$ и $\lambda_{\rm n}$, нагреваемой постоянным потоком теплоты q = 5000 Вт/м², выполнен методом конечных разностей по программе TRT [29].

Решением обратной задачи теплопроводности следовало определить $a_{\rm r}$ и $\lambda_{\rm r}$, а затем сравнить их с исходными значениями $a_{\rm u}$ и $\lambda_{\rm u}$, при которых рассчитано исходное (тестовое) температурное поле.

Результаты расчета $T(X = 1) = T_1(\tau_i), T(X = 0) = T_0(\tau_i), T_{\rm cp, \, пл, \, u}(\tau_i)$ при $T_{\rm H} = 1800$ К и q = 5000 Вт/м² приведены в табл. 1. В следующих строках табл. 1 приведены ре-

Таблица 1

Температуры неограниченной пластины и результаты расчета температуропроводности $a_{_{\rm T}}$ и коэффициента теплопроводности $\lambda_{_{\rm T}}$ материала

Table 1. Temperatures of an unlimited plate and the results of calculating the thermal diffusivity a_t and thermal conductivity coefficient λ_t of the material

i	0	1	2	3	4	5	6	7	8	9	10
Время, с	0	11	22	33	44	55	66	77	88	99	105
T(X=1)	1800,0	1808,4	1811,8	1814,4	1816,6	1818,6	1820,3	1821,9	1823,4	1824,8	1825,6
T(X=0)	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,1
<i>T</i> _{ср, пл, и}	1800,0	1800,6	1801,1	1801,6	1802,2	1802,7	1803,2	1803,8	1804,3	1804,9	1805,1
a_0		1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,0	1800,1
<i>a</i> ₁	0	8,4	11,8	14,4	16,6	18,6	20,3	21,9	23,4	24,8	25,5
Fo _j		0,0516	0,0518	0,0519	0,0519	0,0517	0,0519	0,0519	0,0519	0,0519	0,0509
R _i		0,0129	0,0183	0,0224	0,0259	0,0289	0,0317	0,0343	0,0366	0,0388	0,0400
n		3,9338	3,9180	3,9122	3,9119	3,9251	3,9117	3,9101	3,9111	3,9104	3,9975
<i>T</i> _{ср, ни, <i>i</i>}		1800,0	1801,2	1802,0	1802,5	1803,0	1803,4	1803,8	1804,2	1804,5	1804,9
$T_{\rm cp}(\tau_i)$	1800,0	1801,7	1802,4	1802,9	1803,4	1803,8	1804,1	1804,5	1804,8	1805,1	1805,2
Т _{ср,пл}	1800,0	1800,6	1801,1	1801,6	1802,2	1802,7	1803,3	1803,8	1804,4	1804,9	1805,2
$a_{\rm T, i} \cdot 10^7$		7,850	7,880	7,891	7,890	7,870	7,892	7,895	7,890	7,890	7,730
$\lambda_{_{\rm T}}$		1,96	1,98	1,99	1,99	1,98	2,00	2,00	2,00	2,00	1,96

зультаты определения $a_{\rm T}$ и $\lambda_{\rm T}$ предложенным методом. Более подробный расчет для первых интервалов времени приведен выше.

Температура $T_0(\tau)$ изменилась на 0,1 К в момент времени $\tau_{\rm k} = 105$ с (см. табл. 1). Исходные $T_{\rm cp, \, пл, \, и}$ и рассчитанные значения $T_{\rm cp, \, пл}$ практически совпали. Значения $T_{\rm cp, \, пл, \, u}$ можно определить только для численного эксперимента.

Проверим невязку баланса теплоты Δ по «физическому эксперименту» $Q_{\phi} = q\tau_{\kappa}$ и модели $Q_{M} = c_{T}R \times (T_{cp, n\pi}(\tau_{\kappa}) - T_{H})$:

$$\Delta = 100 \left(1 - q \frac{\tau_{\kappa}}{c_{\rm T} R \left(T_{\rm cp, III} \left(\tau_{\kappa} \right) - T_{\rm H} \right)} \right) =$$

= 100 \cdot $\left(1 - 5000 \cdot \frac{105}{\frac{1,99}{7,869 \cdot 10^{-7}} \cdot 0,04 \cdot (1805, 1 - 1800)} \right) =$
= 1.7 \%.

Следовательно, функция (1) довольно точно описывает распределение температур по сечению пластины в прогретом слое.

Среднеарифметические величины десяти значений $a_{\rm T}$ и $\lambda_{\rm T}$ были отнесены к среднемассовой температуре прогретого слоя $T_a = \frac{1800 + 1805, 1}{2} = 1802,55$ за время 105 с и получились равными $a_{\rm T}(T = 1802,55) = 7,869 \cdot 10^{-7}$ и $\lambda = \lambda_{\rm T}(T = 1802,55) = 1,99$. Отклонение б от исходных значений $a_{\rm H}(T = 1802,7) = 7,754 \cdot 10^{-7}$ и $\lambda_{\rm H}(T = 1802,7) = 1,985$ составило δ_{a} ср = 1,48 % и δ_{λ} ср = 0,1 %.

= 1,985 составило $\delta_{a, cp}$ = 1,48 % и $\delta_{\lambda, cp}$ = 0,1 %. Анализ изменения $a_{\tau, i}$ и $\lambda_{\tau, i}$ в табл. 1 и результатов расчетов при других T_{μ} показал, значения a_{τ} и λ_{τ} на интервалах расчета изменяются незначительно (на 1 – 3 %). Проверим, можно ли рассчитать значения $a_{\tau, o}$ и $\lambda_{\tau, o}$ сразу для всего времени нагрева $0 \le \tau \le \tau_{\kappa}$, не выполняя промежуточные расчеты по интервалам времени.

Величина $a_{\tau, o}$ определится решением системы из трех уравнений (2), (3), (4). Уравнения (2) – (4), преобразованные с учетом (1), для данных из табл. 1 $(R_{\rm n} = 0.04 \text{ м}, q = 5000 \text{ Вт/м}^2, T_{\rm H} = 1800 \text{ K}, \tau_{\rm K} = 105 \text{ c},$ $T_0(\tau_{\rm K}) = 1801.1, T_1(\tau_{\rm K}) = 1825.6.1$) запишутся в виде:

$$n(Fo) = 8,2052 - 82,74Fo;$$

$$a_{\tau,o} = \frac{T_0(\tau_{\kappa}) + \frac{T_1(\tau_{\kappa}) - T_0(\tau_{\kappa})}{n+1} - T_{\mu}}{n(T_1(\tau_{\kappa}) - T_0(\tau_{\kappa}))\frac{\tau_{\kappa}}{R^2}} = \frac{1800, 1 + \frac{25,5}{n+1} - 1800}{n \cdot 25, 5 \cdot \frac{105}{0,04^2}};$$
Fo = $a_{\tau,o} \frac{105}{0,04^2}.$

Подобрав значение числа Fo равным 0,0504, получим n(Fo) = 4,0245 и $a_{\text{т, o}} = 7,68 \cdot 10^{-7}$. Значение $a_{\text{т, o}}$ отличается от исходного $a_{\mu}(T = 1802,7) = 7,754 \cdot 10^{-7}$ всего на 0,9 %.

Коэффициент теплопроводности $\lambda_{r,o}$ определится по формуле (7), которая для $\tau_{\kappa} = 105$ с запишется в виде

$$\begin{split} \lambda_{\mathrm{T, 0}} &= q \, \frac{R}{n \big(T_{\mathrm{1}}(\tau_{\mathrm{K}}) - T_{\mathrm{0}}(\tau_{\mathrm{K}}) \big)} = \\ &= 5000 \cdot \frac{0.04}{4.0245 \cdot 25.5} = 1.945 \; \mathrm{Bt/(M \cdot K)}. \end{split}$$

Значение $\lambda_{r,o}$ отличается от исходного на –1,8 %.

Аналогичные расчеты по определению $a_{\rm T}$ выполнены по $\tau_{\rm K}$ и таких же условий теплообмена, но с другими начальными условиями, $T_{\rm H} = 300, 900, 1200$ К.

В табл. 2. приведены результаты расчета $a_{\rm r}$, $a_{\rm r, o}$, $\lambda_{\rm r}$, $\lambda_{\rm r, o}$ и их отклонение от истинных значений: $\delta_{a, \rm cp}$ и $\delta_{\lambda, \rm cp}$ (расчет десяти интервалов) и $\delta_{a, \rm o}$ и $\delta_{\lambda, \rm o}$ (расчет только по начальным и конечным параметрам поля).

Среднеарифметические абсолютные отклонения для четырех T_a (см. табл. 2) для $a_{\rm T}$ составили $\delta_{a, {\rm cp}} = 2,2$ и $\delta_{a, {\rm o}} = 1,7$ %, а для $\lambda_{\rm T} - \delta_{\lambda, {\rm cp}} = 0,83$ и $\delta_{\lambda, {\rm o}} = 1,25$ %. Таким образом, расчет $a_{{\rm T},{\rm o}}$ и $\lambda_{{\rm T},{\rm o}}$ с погрешностью около 2% для принятых условий можно было выполнить реше-

Таблица 2

Результаты расчета температуропроводности материала $a_{_{\rm T}}$ и коэффициента теплопроводности $\lambda_{_{\rm T}}$ по температурным полям, полученным при q = 5000 Вт/м² и начальных условиях $T_{_{\rm H}} = 300, 900, 1200, 1800$ К

Table 2. Results of calculating the thermal conductivity a_t and thermal conductivity coefficient λ_t from the temperature fields obtained at $q = 5000 \text{ W/m}^2$ and the initial conditions $T_b = 300, 900, 1200, 1800 \text{ K}$

$T_{_{\rm H}}(x)$, К (0 $\le x \le 0,04$ м)	300	900	1200	1800
Время, т _к , с	150	123	120	105
$T_1(\tau_{\kappa})$	352,7	936,9	1232,7	1825,6
$T_0(\tau_{\rm k})$	300,1	900,1	1200,1	1800,1
$T_{\rm cp, \pi\pi}(\tau_{\rm k})$	310,8	907,5	1206,7	1805,1
$T_a = \frac{T_{\rm H} + T_{\rm cp, III}(\tau_{\rm K})}{2}$	305,40	903,80	1203,35	1802,55
$a_{_{\rm H}}(T_a) \cdot 10^7$	5,384	6,526	7,000	7,754
$a_{\rm T}(T_a) \cdot 10^7$	5,527	6,724	6,889	7,869
δ _{<i>a</i>, cp} , %	2,60	3,00	-1,60	1,48
δ _{<i>a</i>, o} , % для <i>a</i> _{т, o}	1,0	1,3	-3,6	-0,9
$\lambda_{_{\rm H}}(T_a)$	0,952	1,365	1,570	1,985
$\lambda_{\rm T}(T_a)$	0,963	1,380	1,550	1,990
$\delta_{\lambda, cp}, \%$	1,1	0,9	-1,2	0,1
$\delta_{\lambda, o}, \%$ для $\lambda_{T, o}$	0,4	-0,3	-2,5	-1,8

нием системы лишь трех алгебраических уравнений, записанных только для момента времени $\tau = \tau_{\kappa}$. Обратим внимание, что время «экспериментального нагрева» t_{κ} составляло 105 – 150 с.

На рис. 2 приведены исходные (истинные) и расчетные значения температуропроводности и коэффициента теплопроводности.

Поскольку представленный метод является приближенным, при его практическом использовании рекомендуется отработать технику эксперимента (граничные условия) на материалах с известными ТФХ. Перепад температур $\Delta T = T(R_n, \tau_\kappa) - T_H$, по оценке автора, должен находиться в пределе 20 – 60 К. Величину потока теплоты для эксперимента можно принять по формуле $q \approx 4\Delta T \frac{\lambda}{R_n}$, где λ – ожидаемое значение коэффициента теплопроводности.

Выводы

Предложен простой алгоритм расчета температуропроводности $a_{\rm T}$ и коэффициента теплопроводности $\lambda_{\rm T}$ по известному температурному полю полуограниченного тела. Для оценки точности метода выполнены расчеты $a_{\rm T}$ и $\lambda_{\rm T}$ огнеупорного материала по предварительно рассчитанным (тестовым) температурным полям неограниченной пластины, полученным при граничных условиях второго рода q = const и $T(x = 0, \tau) = T_{\rm H} = \text{const}$. Показано, что для принятых условий теплообмена значения $a_{\rm T}$ и $\lambda_{\rm T}$ могут быть определены с погрешностью около 2 % только лишь по толщине пластины $R_{\rm n}$, q, $T_{\rm H}$ и температуре поверхности $T(R_{\rm n}, \tau_{\rm K})$ в момент достижения температурного возмущения адиабатной поверхности $\tau_{\rm K}$.

Применение метода позволит значительно упростить проведение и обработку экспериментов для комплексного определения теплофизических характеристик материалов.

Список литературы / References

- Определение теплофизических свойств материалов металлургического производства / Б.П. Юрьев, В.А. Гольцев, В.И. Матюхин, О.Ю. Шешуков. Екатеринбург: ООО «УИПЦ», 2014. 180 с.
- Фокин В.М., Чернышев В.Н. Неразрушающий контроль теплофизических характеристик строительных материалов. М.: Издательство Машиностроние–1, 2004. 212 с.
- Жуков Н.П., Майникова Н.Ф. Многомодельные методы и средства неразрушающего контроля теплофизических свойств материалов и изделий. М.: Издательство Машиностроние–1, 2004. 288 с.
- Grysa Kr. Inverse heat conduction problems // Heat Conduction Basic Research. Intech Open. URL: https://www.intechopen.com/ chapters/24518
- Savija I., Culham J.R., Yovanovich M.M., Marotta E.E. Review of thermal conductance models for joints incorporating enhancement materials // Journal of Thermophysics and Heat Transfer. 2003. Vol. 17. No. 1. P. 43–52. https://doi.org/10.2514/2.6732
- Bouguerra A., Ait-Mokhtar A., Amiri O., Diop M.B. Measurement of thermal conductivity, thermal difusivity and heat capacity of highly porous building materials using transient plane source technique // International Communications in Heat and Mass Transfer. 2001. Vol. 28. No. 8. P. 1065–1078. https://doi.org/10.1016/S0735-1933(01)00310-4

- Yur'ev B.R., Gol'tsev V.A., Matyukhin V.I., Sheshukov O.Yu. Determination of Thermophysical Properties of Metallurgical Production Materials: Sci. Monograph. Yekaterinburg: UIPTs, 2014, 180 p. (In Russ.)
- Fokin V.M., Chernyshov V.N. Nondestructive Control of Thermophysical Characteristics of Building Materials. Moscow: Mashinostroenie -1, 2004, 212 p. (In Russ.).
- Zhukov N.P., Mainikova N.F. Multi-Model Methods and Means of Nondestructive Control of Materials and Products Thermophysical Properties. Moscow: Mashinostroenie –1, 2004, 288 p. (In Russ.).
- Grysa Kr. Inverse heat conduction problems. In: *Heat Conduction Basic Research. Intech Open*. Available at URL: https://www.inte-chopen.com/chapters/24518
- Savija I., Culham J.R., Yovanovich M.M., Marotta E.E. Review of thermal conductance models for joints incorporating enhancement materials. *Journal of Thermophysics and Heat Transfer*. 2003, vol. 17, no. 1, pp. 43–52. https://doi.org/10.2514/2.6732
- Bouguerra A., Ait-Mokhtar A., Amiri O., Diop M.B. Measurement of thermal conductivity, thermal difusivity and heat capacity of highly porous building materials using transient plane source technique. *International Communications in Heat and Mass Transfer*. 2001, vol. 28, no. 8, pp. 1065–1078.

https://doi.org/10.1016/S0735-1933(01)00310-4

- Lin J.H., Chen C.K., Yang Y.T. Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems // Journal of Thermophysics and Heat Transfer. 2001. Vol. 15. No. 1. P. 34–41. https://doi.org/10.2514/2.6593
- Tervola P. A method to determine the thermal conductivity from measured temperature profiles // International Journal of Heat and Mass Transfer. 1989. Vol. 32. No. 8. P. 1425–1430. https://doi.org/10.1016/0017-9310(89)90066-5
- Yang C.-Y. Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems // Applied Mathematical Modelling. 1999. Vol. 23. No. 6. P. 469–478. https://doi.org/10.1016/S0307-904X(98)10093-8
- 10. Liu C.S. One-step GPS for the estimation of temperature-dependent thermal conductivity // International Journal of Heat and Mass Transfer. 2006. Vol. 49. No. 17–18. P. 3084–3093. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.036
- Kim S., Kim M.C., Kim K.Y. Non-iterative estimation of temperature-dependent thermal conductivity without internal measurements // International Journal Heat and Mass Transfer. 2003. Vol. 46. No. 10. P. 1801–1810. https://doi.org/10.1016/S0017-9310(02)00486-6
- Зверев В.Г., Назаренко В.А., Теплоухов А.В. Определение теплофизических характеристик материалов при тепловом воздействии постоянной мощности // Теплофизика и аэромеханика. 2011. Т. 18. № 3. С. 493–502.
- 13. Alhama E., Zueco J., González Fernández C.F. An efficient method for simultaneously determining thermal conductivity and specific heat solids in the form of an inverse problem // International Communications in Heat and Mass Transfer. 2004. Vol. 31. No. 7. P. 929–937. https://doi.org/10.1016/j.icheatmasstransfer.2004.05.003
- 14. Chen H.-T., Lin J.-Y. Simultaneous estimations of temperature-dependent thermal conductivity and heat capacity // International Journal of Heat and Mass Transfer. 1998. Vol. 41. No. 14. P. 2237–2244. https://doi.org/10.1016/S0017-9310(97)00260-3
- Chia-Lung C., Ming C. Inverse determination of thermal conductivity using semi-discretization method // Applied Mathematical Modelling. 2009. Vol. 33. No. 3. P. 1644–1655. https://doi.org/10.1016/j.apm.2008.03.001
- Weizhen Pan, Fajun Yi, Songhe Meng. Temperature-dependent thermal properties measurement by solvinginverse heat transfer problems // Measurement Science and Technology. 2016. Vol. 27. No. 7. Article 075005.
- Rostamian M., Shahrezaee A. Application of meshless methods for solving an inverse heat conduction problem // European Journal of Pure and Applied Mathematics. 2016. Vol. 9. No. 1. P. 64–83.
- Monde M., Kosaka M., Mitsutake Y. Simple measurement of thermal diffusivity and thermal conductivity using inverse solution for one-dimensional heat conduction // International Journal of Heat and Mass Transfer. 2010. Vol. 53. No. 23–24. P. 5343–5349. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.022
- Kosaka M., Monde M. Simultaneous measurement of thermal diffusivity and thermal conductivity by means of inverse solution for one-dimensional heat conduction (anisotropic thermal properties of CFRP for FCEV) // International Journal of Thermophysics. 2015. Vol. 36. No. 10–11. P. 2590–2598. https://doi.org/10.1007/s10765-015-1973-5
- 20. Huang C.H., Yan J.Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity // International Journal of Heat and Mass Transfer. 1995. Vol. 38. No. 18. P. 3433–3441. https://doi.org/10.1016/0017-9310(95)00059-1
- Bosnic J.A., Petrovic G., Malaric R. Estimation of the wall thermal properties through comparison of experimental and simulated heat flux // 21st IMEKO TC4 Int. Symp. and 19th Int. Workshop on ADC Modelling and Testing Understanding the World through Electrical and Electronic Measurement, Budapest, Hungary, September 7–9, 2016. P. 11–15.
- 22. Nedin R., Nesterov S., Vatulyan A. Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded

- Lin J.H., Chen C.K., Yang Y.T. Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems. *Journal of Thermophysics and Heat Transfer*. 2001, vol. 15, no. 1, pp. 34–41. https://doi.org/10.2514/2.6593
- 8. Tervola P. A method to determine the thermal conductivity from measured temperature profiles. *International Journal of Heat and Mass Transfer*. 1989, vol. 32, no. 8, pp. 1425–1430. https://doi.org/10.1016/0017-9310(89)90066-5
- Yang C.-Y. Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems. *Applied Mathematical Modelling*. 1999, vol. 23, no. 6, pp. 469–178. https://doi.org/10.1016/S0307-904X(98)10093-8
- Liu C.S. One-step GPS for the estimation of temperature-dependent thermal conductivity. *International Journal of Heat and Mass Transfer*. 2006, vol. 49, no. 18, pp. 3084–3093. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.036
- Kim S., Kim M.C., Kim K.Y. Non-iterative estimation of temperature-dependent thermal conductivity without internal measurements. *International Journal Heat and Mass Transfer*. 2003, vol. 46, no. 10, pp. 1801–1810. https://doi.org/10.1016/S0017-9310(02)00486-6
- Zverev V.G., Nazarenko V.A., Teploukhov A.V. Determination of thermophysical characteristics of materials at thermal effect of constant power. *Thermophysics and Aeromechanics*. 2011, vol. 18, no. 3, pp. 477–486. https://doi.org/10.1134/S0869864311030127
- 13. Alhama F., Zueco J., González Fernández C.F. An efficient method for simultaneously determining thermal conductivity and specific heat solids in the form of an inverse problem. *International Communications in Heat and Mass Transfer*. 2004, vol. 31, no. 7, pp. 929–937. https://doi.org/10.1016/j.icheatmasstransfer.2004.05.003
- 14. Chen H.-T., Lin J.-Y. Simultaneous estimations of temperature-dependent thermal conductivity and heat capacity. *International Journal of Heat and Mass Transfer*. 1998, vol. 41, no. 14, pp. 2237–2244. https://doi.org/10.1016/S0017-9310(97)00260-3
- Chia-Lung C., Ming C. Inverse determination of thermal conductivity using semi-discretization method. *Applied Mathematical Modelling*. 2009, vol. 33, no. 3, pp. 1644–1655. https://doi.org/10.1016/j.apm.2008.03.001
- Weizhen Pan, Fajun Yi, Songhe Meng. Temperature-dependent thermal properties measurement by solving inverse heat transfer problems. *Measurement Science and Technology*. 2016, vol. 27, no. 7, article 075005.
- Rostamian M., Shahrezaee A. Application of meshless methods for solving an inverse heat conduction problem. *European Journal of Pure and Applied Mathematics*. 2016, vol. 9, no. 1, pp. 64–83.
- Monde M., Kosaka M., Mitsutake Y. Simple measurement of thermal diffusivity and thermal conductivity using inverse solution for one-dimensional heat conduction. *International Journal of Heat and Mass Transfer*. 2010, vol. 53, no. 23–24, pp. 5343–5349. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.022
- Kosaka M., Monde M. Simultaneous measurement of thermal diffusivity and thermal conductivity by means of inverse solution for one-dimensional heat conduction (anisotropic thermal properties of CFRP for FCEV). *International Journal of Thermophysics*. 2015, vol. 36, no. 10–11, pp. 2590–2598. https://doi.org/10.1007/s10765-015-1973-5
- Huang C.H., Yan J.Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity. *International Journal of Heat and Mass Transfer*. 1995, vol. 38, pp. 3433–3441. https://doi.org/10.1016/0017-9310(95)00059-1
- Bosnic J.A., Petrovic G., Malaric R. Estimation of the wall thermal properties through comparison of experimental and simulated heat flux. 21st IMEKO TC4 Int. Symp. and 19th Int.Workshop on ADC Modelling and Testing Understanding the World through Electrical and Electronic Measurement, Budapest, Hungary, September 7–9, 2016, pp. 11–15.
- 22. Nedin R., Nesterov S., Vatulyan A. Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded

materials // International Journal of Heat and Mass Transfer. 2016. Vol. 102. P. 213–218.

https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.027

 Kolehmainen V., Kaipio J.P., Orlande H.R.B. Reconstruction of thermal conductivity and heat capacity using a tomographic approach // International Journal of Heat and Mass Transfer. 2008. Vol. 51. No. 7–8. P. 1866–1876.

https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.043

- 24. Alaili K., Ordonez-Miranda J., Ezzahri Y. Simultaneous determination of thermal diffusivity and thermal conductivity of a thin layer using double modulated thermal excitations // Journal of Applied Physics. 2019. Vol. 126. No. 14. Article 145103. https://doi.org/10.1063/1.5116526
- 25. Huang C.-H., Huang C.-Y. An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue // Applied Mathematical Modelling. 2007. Vol. 31. No. 9. P. 1785–1797. https://doi.org/10.1016/j.apm.2006.06.002
- 26. Соколов А.К. Определение температуропроводности материала по численно-аналитической модели полуограниченного тела // Известия вузов. Черная металлургия. 2020. Т. 63. № 6. С. 474–480. https://doi.org/10.17073/0368-0797-2020-6-474-480
- Соколов А.К., Якубина О.А. Численно-аналитический метод расчета температурного поля полуограниченного тела с использованием показательных функций // Вестник ИГЭУ. 2016. Вып. 2. С. 44–50.
- 28. Соколов А.К. О численно-аналитическом расчете температурного поля полуограниченного тела при линейном начальном распределении температур // Известия РАН. Энергетика. 2019. № 4. С. 1–13.
- **29.** Соколов А.К. Математическое моделирование нагрева металла в газовых печах. Иваново: Ивановский государственный энергетический университет имени В.И. Ленина, 2011. 396 с.
- 30. ГОСТ Р 57967-2017. Композиты. Определение теплопроводности твердых тел методом стационарного одномерного теплового потока с охранным нагревателем. URL: https://docs.cntd.ru/ document/1200157746

materials. International Journal of Heat and Mass Transfer. 2016, vol. 102, no. 11, pp. 213–218. https://doi.org/10.1016/j.jjheatmasstransfer.2016.06.027

- Kolehmainen V., Kaipio J.P., Orlande H.R.B. Reconstruction of thermal conductivity and heat capacity using a tomographic approach. *International Journal of Heat and Mass Transfer*. 2008, vol. 51, no. 7–8, pp. 1866–1876. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.043
- 24. Alaili K., Ordonez-Miranda J., Ezzahri Y. Simultaneous determination of thermal diffusivity and thermal conductivity of a thin layer using double modulated thermal excitations. *Journal of Applied Physics*. 2019, vol. 126, no. 14, article 145103. https://doi.org/10.1063/1.5116526
- 25. Huang C.-H., Huang C.-Y. An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue. *Applied Mathematical Modelling*. 2007, vol. 31, no. 9, pp. 1785–1797. https://doi.org/10.1016/j.apm.2006.06.002
- **26.** Sokolov A.K. Determination of thermal diffusivity of the material by numerical-analytical model of a semi-bounded body. *Izvestiya. Ferrous Metallurgy*. 2020, vol. 63, no. 6, pp. 474–480. https://doi.org/10.17073/0368-0797-2020-6-474-480
- Sokolov A.K., Yakubina O.A. Numerical-analytical method for calculating the temperature field of a semi-bounded body using exponential functions. *Vestnik IGEU*. 2016, no. 2, pp. 44–50. (In Russ.).
- **28.** Sokolov A.K. On numerical and analytical calculation of temperature field of a semi-bounded body with linear initial temperature distribution. *Izvestiya RAN. Energetika.* 2019, no. 4, pp. 1–13. (In Russ.).
- Sokolov A.K. Mathematical Modeling of Metal Heating in Gas Furnaces. Ivanovo: Ivanovo State Power University, 2011, 396 p. (In Russ.).
- **30.** GOST R 57967-2017. Composites. Determination of the thermal conductivity of solids by the method of stationary one-dimensional heat flow with a security heater. Available at URL: https://docs.cntd.ru/document/1200157746 (In Russ.).

Сведения об авторе / Information about the author						
Анатолий Константинович Соколов, д.т.н., профессор кафедры безопасности жизнедеятельности, Ивановский государствен- ный энергетический университет имени В.И. Ленина ORCID: 0000-0001-5956-567X E-mail: sokolov@bjd.ispu.ru	Anatolii K. Sokolov, Dr. Sci. (Eng.), Professor of the Chair of Life Safety, Ivanovo State Power University named after V.I. Lenin ORCID: 0000-0001-5956-567X E-mail: sokolov@bjd.ispu.ru					
Поступила в редакцию 08.09.2021 После доработки 08.10.2021 Принята к публикации 29.10.2021	Received 08.09.2021 Revised 08.10.2021 Accepted 29.10.2021					