ISSN: ОЗ68-0797. Известия высших учебных заведений. Черная металлургия. 2019. Том 62. № 12. С. 957 – 963. © 2019. Бердников В.И., Гудим Ю.А.

УДК 541.11

АНАЛИЗ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РАСПЛАВА КАЛЬЦИЙ–КРЕМНИЙ–ЖЕЛЕЗО

Бердников В.И.¹, к.т.н., доцент, старший научный

сотрудник (berdnikov-chel@mail.ru) *Гүдим Ю.А.*², *д.т.н., профессор*

¹ООО Промышленная компания «Технология металлов»

(454018, Россия, Челябинск, ул. Косарева, 63, офис 486) ² Южно-Уральский государственный университет

(454080, Россия, Челябинск, пр. Ленина, 76)

Аннотация. Для анализа термодинамических свойств расплава Са-Si-Fe использовали модель идеальных ассоциированных растворов. Химическое равновесие по закону действующих масс между ассоциатами и мономерами в принятом варианте модели осуществляли с учетом абсолютного числа их молей. Это позволяло учесть изменение мольного состава ассоциированного раствора в зависимости от концентрации компонентов в нем. Наиболее полно анализировали малоизученную бинарную подсистему Ca-Si. Используя последние сведения о температурной зависимости теплоемкостей для пяти типов интерметаллидов этой подсистемы, установили типы стабильных ассоциатов Ca,Si, CaSi в области с низким содержанием кремния в растворе и CaSi, CaSi, в области с высоким содержанием кремния в растворе. Термодинамические свойства соответствующих интерметаллидов в базах данных Терра, Астра и HSC заметно отличались от вычисленных свойств ассоциатов. Причина рассогласования опытных и справочных данных состоит, по-видимому, в неточной справочной информации, основанной на прежних заниженных значениях теплоемкостей интерметаллидов. Анализ энергии смешения компонентов сплава Ca-Si показал, что в области с высоким содержанием кремния концентрационная и температурная зависимости избыточной свободной энергии хорошо подчиняются так называемой псевдосубрегулярной модели бинарных растворов. Для подсистемы Fe-Si были установлены лишь два типа стабильных ассоциатов: Fe,Si и FeSi. Энергии образования этих ассоциатов и соответствующих интерметаллидов в целом согласуются. Подсистема Са-Fe ввиду весьма ограниченной взаимной растворимости компонентов выведена из рассмотрения. Таким образом, в тройной системе Ca-Si-Fe в области с высокой концентрацией кремния из пяти возможных ассоциатов действительны лишь три (CaSi, CaSi,, FeSi). Расчет при этом условии термодинамических свойств расплавов силикокальция марок CK10 - CK30 показал, что активность кремния в них при температуре 1873 К находится в пределах 0,60 – 0,70, в то время как активности остальных компонентов не превышают 0.01.

Ключевые слова: ассоциат, интерметаллид, база данных, модель идеальных ассоциированных растворов, система Ca-Si, система Fe-Si, силикокальций.

DOI: 10.17073/0368-0797-2019-12-957-963

Введение

Информация о термодинамических свойствах системы Ca-Si-Fe может быть полезной при использовании силикокальция в качестве раскилителя и модификатора при плавке высококачественных сталей и сплавов. Для анализа этой системы использовали модель идеальных ассоциированных растворов (ИАР) [1] в трактовке работ [2-5]. Основные особенности ее заключаются в следующем:

 – химическое равновесие между ассоциатами и мономерами по закону действующих масс осуществляется с учетом абсолютного числа их молей, а не с учетом мольных долей этих частиц в растворе;

– отбор ассоциатов из общего их числа выполняется, исходя из принципа минимума свободной энергии их образования; дополнительная проверка этого условия должна подтверждать необходимость исключения из расчета не прошедших отбор ассоциатов вследствие взаимных химических реакций.

Подсистема Са – Si

В тройной системе Ca–Si–Fe наименее изученной является бинарная подсистема Ca–Si [6–9]. Считается, что в твердом и жидком сплавах Ca–Si присутствуют интерметаллиды (Ca₅Si₃, Ca₂Si, CaSi, Ca₃Si₄ и CaSi₂). Термодинамические свойства этих соединений были приняты в соответствии с недавним подробным исследованием [10]. Аналогичная информация в базах данных [11–13] имела весьма ограниченный и противоречивый характер (табл. 1) и поэтому в дальнейшем не использовалась.

Обработку исходной термодинамической информации осуществляли методами, принятыми в базах данных [12, 14]. Каждое химическое соединение представляют в них характеристикой, именуемой приведенной энергией Гиббса G^* , полученной путем соответствующего преобразования зависимости $C_p = f(T)$. Это позволяет определить полную приведенную энергию Гиббса G^{**} , учитывающую дополни-

Таблица 1

Стандартные значения энтальпии $\left(\Delta H_{298}^{\circ}\right)$ и энтропии $\left(\Delta S_{298}^{\circ}\right)$ для интерметаллидов системы Ca–Si

Table 1. Standard values of enthalpy (ΔH_{298}°) and entropy (ΔS_{298}°) of intermetallics in Ca–Si system

Интер-	$-\Delta H$	。 ₂₉₈ , кДж из работ	/моль, ъі	$\Delta S_{298}^{\circ},$ кДж/(моль·К), из работы		
мсталлид	[10]	[11]	[12, 13]	[10]	[11]	[12, 13]
Ca ₂ Si	141,2	209	_	93,7	81,2	—
CaSi	87,0	150	151	60,4	45,2	62,8
CaSi ₂	93,7	150	151	77,3	50,6	92,1

тельно стандартную энтальпию химического соединения, а также энергию Гиббса ΔG рассматриваемого соединения:

$$\Delta G = -G^{**}T.$$
 (1)

Энергия образования интерметаллида типа Ca_mSi_n определяли обычным способом:

$$\Delta_f G^{\circ} = \Delta G^{\circ}_{\operatorname{Ca}_m \operatorname{Si}_n} - m \Delta G^{\circ}_{\operatorname{Ca}} - n \Delta G^{\circ}_{\operatorname{Si}}.$$
 (2)

Исходя из специфики хранения информации в упомянутых базах данных, численное значение $\Delta_f G^\circ$, Дж/моль, представляли полиномом

$$\Delta_f G^{\circ} = -\left(\phi_0 + \phi_1 \ln t + \frac{\phi_2}{t} + \phi_3 t\right) T, \qquad (3)$$

где φ_i – коэффициенты полинома (значения этих коэффициентов приведены в табл. 2); $t = 10^{-4}T$.

В расчетной практике для оценки величины $\Delta_f G^{\circ}$ чаще используется двучленный полином типа

$$\Delta_f G^\circ = A + BT. \tag{4}$$

Формулы (3) и (4) согласуются при условии:

$$A = -10^{4} \varphi_{2}; B = -\varphi_{0} + 9,2103\varphi_{1} - \varphi_{1} \ln T - 10^{-4} \varphi_{3} T.$$
(5)

Очевидно, что такой полином можно применять лишь в узком диапазоне температур, поскольку коэффициент B не является константой и тоже является функцией температуры. В табл. 2 приводятся численные значения энергий образования ассоциатов при температуре 1873 К, а также константы K химического равновесия реакций образования соответствующих ассоциатов согласно формуле

$$K = \exp\left(-\frac{\Delta_f G^\circ}{RT}\right),\tag{6}$$

где *R* – универсальная газовая постоянная.

Далее для краткости будем именовать эту величину константой комплексообразования.

Таблица 2

Термодинамические характеристики образования интерметаллидов в системе Ca–Si

Table 2. Thermodynamic characteristics of intermetallics formation in Ca–Si system

Ассоциаты	иаты Значение коэффициентов полинома (3) Расчетные зн при тем				четные значени при температ	ачения коэффициента пературе 1873 К		
	ϕ_0	ϕ_1	ϕ_2	φ ₃	А,	В,	$\Delta_f G^{\circ},$	K
	В диапаз	оне 1723 –	2000 К		кДж/моль	кДж/(моль∙К)	кДж/моль	TX
Ca ₂ Si	-140,64	-29,107	20,654	237,01	-206,5	47,5	-117,6	1902
Ca ₅ Si ₃	-375,88	-72,412	58,154	603,38	-581,5	141,6	-316,3	$7 \cdot 10^{8}$
CaSi	-79,089	-14,193	14,439	129,36	-144,4	31,1	-86,2	253
Ca ₃ Si ₄	-277,87	-41,861	50,418	409,79	-504,2	131,0	-258,8	$2 \cdot 10^{7}$
CaSi ₂	-115,20	-16,584	19,966	151,07	-199,7	59,1	-88,9	302
В диапазоне 2000 – 2300 K								
Ca ₂ Si	11,942	65,696	30,134	_	_	_	—	—
Ca ₅ Si ₃	12,565	168,94	82,289	_	-	_	—	—
CaSi	4,1810	37,550	19,613	—	_	_	—	—
Ca ₃ Si ₄	-14,057	122,05	66,809	_	_	_	_	_
CaSi ₂	-17,949	43,839	26,008	_	_	_	_	_

Наименьшую энергию Гиббса имеют ассоциаты Ca_2Si , CaSi и $CaSi_2$ (табл. 2). Эти ассоциаты (далее именуемые стабильными) сохраняются в растворе. Остальные ассоциаты более высоких порядков будут устраняться в ходе следующих возможных химических реакций с образованием стабильных ассоциатов:

$$Ca_5Si_3 = CaSi + 2Ca_2Si, \Delta_r G^\circ = -5,1$$
 кДж/моль; (7.1)

$$Ca_{3}Si_{4} = 2CaSi + CaSi_{2}, \Delta_{r}G^{\circ} = -2,5$$
 кДж/моль; (7.2)

0,091Ca₅Si₃ + 0,182Ca₃Si₄ = CaSi,
$$\Delta_r G^\circ = -10,3 \text{ кДж/моль};$$
 (7.3)

0,143
$$Ca_5Si_3 + 0,285CaSi_2 = CaSi,$$

 $\Delta_r G^\circ = -15,6 \ \kappa Дж/моль;$ (7.4)

$$0,2Ca_{3}Si_{4} + 0,2Ca_{2}Si = CaSi,$$

 $\Delta_{x}G^{\circ} = -10,9$ кДж/моль. (7.5)

Полученные для данных реакций отрицательные значения энергии Гиббса $\Delta_r G^\circ$ свидетельствуют о том, что все эти реакции протекают самопроизвольно. В термодинамических системах с неизвестными ассоциативными свойствами типы стабильных ассоциатов можно также установить, если известны концентрационные зависимости активностей компонентов этой системы [3, 4].

Расчет концентраций x_i ассоциатов и термодинамических активностей a_i компонентов проводился путем решения численным методом системы балансовых уравнений, составленной в соответствии с методикой, изложенной в работах [2-5]:

$$a_{\rm Ca} + a_{\rm Si} + x_{\rm Ca_2Si} + x_{\rm CaSi} + x_{\rm CaSi_2} = 1;$$
 (8.1)

$$a_{\rm Ca} + 2x_{\rm Ca_2Si} + x_{\rm CaSi} + x_{\rm CaSi_2} = (1 - X_{\rm Si})v^{-1};$$
 (8.2)

$$a_{\rm Si} + x_{\rm Ca_2Si} + x_{\rm CaSi} + 2x_{\rm CaSi_2} = X_{\rm Si} v^{-1},$$
 (8.3)

где $x_{\text{Ca}_2\text{Si}} = K_{\text{Ca}_2\text{Si}} v^2 a_{\text{Ca}}^2 a_{\text{Si}}; x_{\text{Ca}\text{Si}} = K_{\text{Ca}\text{Si}} v a_{\text{Ca}} a_{\text{Si}}; x_{\text{Ca}\text{Si}_2} = K_{\text{Ca}\text{Si}_2} v^2 a_{\text{Ca}} a_{\text{Si}}^2; X_{\text{Si}}$ – мольная доля кремния в сплаве; Таблица 3

Расчетные значения констант комплексообразования системы Ca-Si

Table 3. Estimated values of complex formation of associates in Ca–Si system

Accounter	Константа равновесия при Т, К							
Ассоциаты	1773	1873	1973	2073	2173	2273		
Ca ₂ Si	3663	1902	1077	656	426,0	292,0		
CaSi	401	253	169	119	86,9	66,0		
CaSi ₂	578	302	170	103	65,9	44,3		

 v – параметр ассоциации, представляющий отношение числа молей компонентов в растворе к числу молей их в чистых жидкостях.

Численные значения констант комплексообразования системы Ca–Si приведены в табл. 3, термодинамические характеристики этой системы рассчитаны при температуре 1873 К (рис. 1).

Экспериментальное определение активностей компонентов сплава Ca-Si выполняли редко и в ограниченных диапазонах их концентраций. Согласование результатов расчетов с опытными данными, выполненными в сплаве с высоким содержанием кремния при температуре 1873 К, можно считать удовлетворительным:

Рис. 1. Концентрационные зависимости характеристики ассоциации, активностей компонентов, мольных долей мономеров (*a*) и мольных долей ассоциатов (*б*) в сплаве Ca–Si при температуре 1873 К:

 $1 - v; 2 - a_{Ca}, x_{Ca}; 3 - a_{Si}, x_{Si}; 4 - x_{Ca_2Si}; 5 - x_{CaSi}; 6 - x_{CaSi_2}$

Fig. 1. Concentration dependencies of the association characteristic, activities of components, molar fractions of monomers (*a*) and molar fractions of associates (*δ*) in the Ca–Si alloy at 1873 K:

 $1 - v; 2 - a_{Ca}, x_{Ca}; 3 - a_{Si}, x_{Si}; 4 - x_{Ca,Si}; 5 - x_{CaSi}; 6 - x_{CaSi_2}$

$X_{\rm Si}$	0,65	0,70	0,75	_
a _{ca}	<u>0,008</u> 0,011	<u>0,004</u> 0,004	<u>0,023</u> 0,015	_
$X_{\rm Si}$	0,80	0,85	0,90	0,95
a _{si}	<u>0,73</u> 0,74	<u>0,81</u> 0,82	<u>0,88</u> 0,87	<u>0,95</u> 0,94

П р и м е ч а н и е. В числителе указаны расчетные значения *a*, в знаменателе – из работы [8].

Представляет интерес определение энергии смешения сплава Ca-Si согласно ее выражению [15]:

$$Q = \frac{\Delta G_E^{\circ}}{(1 - X_{\rm Si})X_{\rm Si}} = \frac{RT\left[(1 - X_{\rm Si})\ln\gamma_{\rm Ca} + X_{\rm Si}\ln\gamma_{\rm Si}\right]}{(1 - X_{\rm Si})X_{\rm Si}}, (9)$$

где ΔG_E° – избыточная энергия Гиббса; γ_i – коэффициенты активности компонентов.

Показанные сплошными линиями на рис. 2 расчетные значения энергии смешения в диапазоне концентраций $X_{si} = 0.5 \div 1.0$ могут быть интерпретированы в рамках псевдосубрегулярной модели бинарных растворов [15] в соответствии с уравнением:

$$Q = c_0 + c_1 X_{\rm Si} + c_2 X_{\rm Si} T + c_3 T, \tag{10}$$

где $c_0 = 262,61, c_1 = 120,27, c_2 = -0,04254, c_3 = 0,06625.$

Результаты аппроксимации данных по уравнению (10) показаны штриховыми линиями на рис. 2. В диапазоне $X_{Si} = 0 \div 0,5$ зависимость $Q = f(X_{Si}, T)$ имеет более сложный вид. Можно лишь констатировать, что с повышением температуры она приближается к субрегулярному типу.

Подсистема Fe – Si

При анализе подсистемы Fe-Si данные работы [10] не были приняты в качестве исходной информации, так как не были указаны их температурные области. Однако результаты иных многочисленных экспериментальных исследований [16 – 19] системы Fe-Si чрезвычайно разнились. Поэтому были приняты к рассмотрению лишь данные (табл. 4) работы [20], представляющие собой усредненные результаты по работам, выполненными различными исследователями за период до 2002 г.

Рис. 2. Энергия смешения сплава Ca–Si при температурах 1773 (1), 1873 (2), 1973 (3), 2073 (4), 2173 (5), 2273 (6) К: — – данные из работы [15]; – – – расчет по уравнению (10)

Далее по методике работы [3] установили, что эти данные при температуре 1873 К могут быть описаны моделью ИАР на базе всего лишь двух ассоциатов Fe₃Si и FeSi с константами комплексообразования 1250 и 55. Энергии образования ассоциатов и соответствующих интерметаллидов в целом согласуются (табл. 5).

Расчет активностей компонентов системы Fe-Si при наличии двух активных ассоциатов проводили по аналогичной системе уравнений:

$$a_{\rm Fe} + a_{\rm Si} + x_{\rm Fe_3Si} + x_{\rm FeSi} = 1;$$
 (11.1)

$$a_{\rm Fe} + 3x_{\rm Fe_3Si} + x_{\rm FeSi} = (1 - X_{\rm Si})v^{-1};$$
 (11.2)

$$x_{\rm Si} + x_{\rm Fe_3Si} + x_{\rm FeSi} = X_{\rm Si} v^{-1},$$
 (11.3)

где $x_{\text{Fe}_3\text{Si}} = K_{\text{Fe}_3\text{Si}} v^3 a_{\text{Fe}}^3 a_{\text{Si}}; x_{\text{Fe}\text{Si}} = K_{\text{Fe}\text{Si}} v a_{\text{Fe}} a_{\text{Si}}.$

График рассчитанной активности компонентов сплава Fe-Si при температуре 1873 К приведен на

Таблица 4

Экспериментальные значения термодинамической активности системы Fe-Si [20]

Table 4. Experimental values of thermodynamic activity of Fe-Si system [20]

X _{si}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
а _{Fe, 1873 К}	0,8390	0,6210	0,3820	0,1890	0,0870	0,0380	0,0170	0,0090	0,0035
а _{Si, 1873 К}	0,0012	0,0062	0,0240	0,0860	0,2320	0,4290	0,6160	0,7530	0,8840

Таблица 5

Результаты расчета энергии –Д_fG° образования ассоциатов и интерметаллидов в системе Fe–Si при 1873 К

Table 5. Results of calculation of formation energy $(-\Delta_f G^\circ)$ of associates and intermetallics in Fe–Si system at 1873 K, kJ/mol

37	Расчетные значения $-\Delta_f G^\circ$, кДж/моль, для					
Химическое	ассоциатов	интерметаллидов				
соединение	[20]	[10]	[11]	[13]		
Fe ₃ Si	111,1	—	85,9	103,6		
Fe ₅ Si ₃	_	231,6	242,9	252,0		
FeSi	62,4	66,2	69,3	74,8		
FeSi ₂	_	50,5	39,0	61,6		
Fe ₃ Si ₇	_	187,3	126,7	_		

рис. 3. Средняя абсолютная погрешность аппроксимации опытных данных составила 0,023.

Система Fe – Ca – Si

Третью бинарную подсистему Fe-Ca можно исключить из рассмотрения, так как взаимная растворимость железа и кальция имеет место только в области разбавленных растворов. Таким образом, в

 $1 - v; 2 - a_{Fe}, x_{Fe}; 3 - a_{Si}, x_{Si}; 4 - x_{Fe}_{Si}; 5 - x_{FeSi};$ — – данные из работы [20]; – – – расчет по уравнениям (11)

Fig. 3. Thermodynamic characteristics of Fe–Si alloy at 1873 K: $l - v; 2 - a_{Fe}, x_{Fe}; 3 - a_{Si}, x_{Si}; 4 - x_{Fe_3Si}; 5 - x_{FeSi}; - - - - data of [20];$ - - - - calculated by equation (11)

тройной системе Ca-Si-Fe следует учитывать лишь пять стабильных ассоциатов: Ca₂Si, CaSi, CaSi₂, Fe₃Si и FeSi. Однако практический интерес (табл. 6) представляет только часть тройной системы с высокой

Таблица б

Значение показателя для сплава марки Показатель Компонент СК10 СК15 СК20 СК25 СК30 10 20 25 30 Ca 15 Содержание, % (по массе) Si 65 65 65 65 64 25 20 15 10 Fe 6 0,083 0,123 0,162 0,200 0,239 Ca Si 0,769 0,760 0,751 0,743 0,727 Мольная доля Fe 0.148 0.117 0.087 0.057 0.034 0,0005 0,0009 0,0013 0,0018 Ca 0,0026 0.689 0.644 0,622 0,584 Активность Si 0.667 0,0035 Fe 0,0068 0,0059 0,0048 0,0024 Ca 0,006 0,007 0,008 0,009 0,011 Коэффициент активности Si 0.896 0.897 0.857 0.837 0.803 0,069 Fe 0,046 0,051 0.053 0,061 0,194 CaSi 0,069 0,108 0,150 0,248 CaSi, 0,042 0,081 0,098 0,113 0,062 Мольная доля ассоциата 0,192 0,049 FeSi 0,157 0,120 0,080 0,743 0,720 Параметр ассоциации v _ 0,699 0,680 0,656

Расчет термодинамических характеристик сплавов силикокальция при температуре 1873 К

Table 6. Calculation of thermodynamic characteristics of Si-Ca alloys at 1873 K

концентрацией кремния, контролируемой тремя ассоциатами:

Ассоциат	CaSi	CaSi ₂	FeSi
$-\Delta_f G_{1873}^{\circ}$, кДж/моль	86,2	88,9	62,4
<i>K</i> ₁₈₇₃	253	302	55

Порядок этой расчетной системы уравнений увеличивается на единицу:

$$a_{\rm Ca} + a_{\rm Si} + a_{\rm Fe} + a_{\rm CaSi} + a_{\rm CaSi_2} + a_{\rm FeSi} = 1;$$
 (12.1)

$$a_{\rm Ca} + x_{\rm CaSi} + 2x_{\rm CaSi_2} = X_{\rm Ca} v^{-1};$$
 (12.2)

$$a_{\rm Si} + x_{\rm CaSi} + 2x_{\rm CaSi_2} + x_{\rm FeSi} = X_{\rm Si} v^{-1};$$
 (12.3)

$$a_{\rm Fe} + x_{\rm FeSi} = X_{\rm Fe} v^{-1},$$
 (12.4)

где $x_{\text{CaSi}} = K_{\text{CaSi}} v a_{\text{Ca}} a_{\text{Si}}; x_{\text{CaSi}_2} = K_{\text{CaSi}_2} v^2 a_{\text{Ca}} a_{\text{Si}}^2; x_{\text{FeSi}} = K_{\text{FeSi}} v a_{\text{Fe}} a_{\text{Si}}.$

Результаты расчета активности компонентов промышленного сплава силикокальция по уравнениям (12) приведены в табл. 6. Очевидно, что избыточная активность компонентов (характеристика «неидеальности» сплава) силикокальция всех марок определяется, главным образом, активностью кремния, т.е. $a_{\rm H36} = 1 - a_{\rm Ca} - a_{\rm Si} - a_{\rm Si} - a_{\rm Si}$.

Выводы

Согласно модели идеальных ассоциированных растворов в тройной системе Ca–Si–Fe должны сформироваться пять видов стабильных ассоциатов: Ca₂Si, CaSi, CaSi₂, Fe₃Si и FeSi. Для оценки активности кальция, кремния и железа в промышленных жидких сплавах силикокальция достаточно учитывать ассоциаты лишь трех видов: CaSi, CaSi₂ и FeSi.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Prigogine I., Defay R. Chemical thermodynamics. London: Longman, 1967.
- Бердников В.И., Гудим Ю.А. Прогнозирование термодинамических свойств жидких интерметаллидных растворов // Изв. вуз. Черная металлургия. 2014. Т. 57. № 7. С. 34 – 38.

- Бердников В.И., Гудим Ю.А. Идентификация ассоциатов в жидких бинарных растворах // Изв. вуз. Черная металлургия. 2014. Т. 57. № 11. С. 60 – 65.
- Бердников В.И., Гудим Ю.А. О применении термодинамической модели идеальных ассоцииированных растворов // Изв. вуз. Черная металлургия. 2015. Т. 58. № 7. С. 513 – 519.
- Бердников В.И., Гудим Ю.А. Идентификация ассоциатов бинарных металлических растворов в аналитической форме // Изв. вуз. Черная металлургия. 2017. Т. 60. № 2. С. 151 – 156.
- Wynnyckyi J.R., Pidgeon L.M. Activities in the Ca-Si system // Met. Trans. 1971. No. 4. P. 975 – 978.
- Durrer R., Folkert G. Metallurgie der Ferrolegierungen. Berlin: Springer-Verlag, 1972. – 700 p.
- Якушевич Н.Ф., Галевский Г.В. Взаимодействие углерода с оксидами кальция, кремния, алюминия. – Новокузнецк: изд. Сиб-ГИУ, 1999. – 250 с.
- 9. Manfrinetti P., Fornasini M.L., Palenzona A. The phase diagram of the Ca Si system // Intermetallics. 2003. Vol. 8. No. 3. P. 223 228.
- Senlin Cui, Manas Paliwal, In-Ho Jung. Thermodynamic optimization of Ca – Fe – Si system and its applications to metallurgical grade Si-refining process // Metallurgical and Materials Transactions E. 2014. Vol. 1. No. 1. P. 67 – 79.
- **11.** Antti Roine. Database HSC Chemistry 6. Pori (Finland): Research Oy Information Service, 2006.
- **12.** Трусов Б.Г. База данных и программный комплекс TERRA, редакция 6.3 (электронный ресурс).
- Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA.OWN) / Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. – Екатеринбург: УрО РАН, 1997. – 231 с.
- Gurvich L.V., Veitz I.V. etc. Thermodynamic properties of individual substances. 4th ed. in 5 vol. – New York: Hemisphere Pub Co., 1989.
- Алпатов А.В., Падерин С.Н. Расчет параметров взаимодействия через энергию смешения. Электронный ресурс: http:// steelcast.ru/interaction_coefficients_calculation_02, 2011. (дата обращения: 10.03.2019).
- Turdogan E.T., Yrieveson P. and Beisler J.F. Kinetic and equilibrium considerations for silicon reaction between silicate melts and graphite – saturated. Part 1: Reaction equilibrium // Transaction of the Metallurgical Society of AIME. 1963. Vol. 227. No. 6. P. 1258 – 1265.
- Elliott J.F., Gleiser M., Ramakrishna V. Thermochemistry for steelmaking. Vol. 2. – London, 1963.
- Darken L.S., Gurry R.W. Physical chemistry of metals. New York: McGraw-Hill, 1953.
- Зубов В.Л., Гасик М.И. Электрометаллургия ферросилиция. – Днепропетровск: Системные технологии, 2002. – 704 с.
- 20. Воробьев А.А. Термодинамические характеристики расплава Fe – Si при 1600 °C // Изв. вуз. Черная металлургия. 2002. Т. 45. № 2. С. 12 – 17.

Поступила в редакцию 22 декабря 2015 г. После доработки 15 октября 2019 г. Принята к публикации 22 октября 2019 г.

IZVESTIYA VUZOV. CHERNAYA METALLURGIYA = IZVESTIYA. FERROUS METALLURGY. 2019. VOL. 62. No. 12, pp. 957–963.

ANALYSIS OF THERMODYNAMIC PROPERTIES OF Ca-Si-Fe MELT

V.I. Berdnikov¹, Yu.A. Gudim²

¹LLC Industrial Company "Technology of Metals", Chelyabinsk, Russia

² South Ural State University, Chelyabinsk, Russia

Abstract. The model of ideal associated solutions was used for the analysis of thermodynamic properties of the Ca-Si-Fe melt. Chemical equilibrium, as per the law of mass conservation between associates and monomers in the assumed model version, was performed without consideration of mole fractions of these particles in solution but with consideration of the absolute number of their moles. It allows taking account the changes in the associated solution mole composition depending on the concentration of its components. The understudied binary sub-system Ca–Si was analyzed most comprehensively. Using the latest data of temperature dependency of heat capacity for five types of intermetallics of this sub-system, types of stable associates in it were defined, i.e. Ca₂Si, CaSi in the solution range with low contents of silicon in solution and CaSi, CaSi, in the solution range with high contents of silicon in solution. Thermodynamic properties of the corresponding intermetallics in the databases Terra, Astra and HSC notably differ from the computed properties of the associates. The reason of disagreement of experimental and reference data consists apparently in the inaccurate reference information based on the previous underestimated studies of intermetallics' heat capacities. Analysis of mixing energy of Ca-Si alloy components has shown that concentration and temperature dependencies of excessive free energy closely follow the so-called pseudosubregular model of binary solutions. Only two types of stable associates were defined for the other sub-system Fe-Si, i.e. Fe,Si and FeSi. On the whole, energies of formation of these associates and respective intermetallics agree well. The third sub-system Ca-Fe was not considered because of the very limited mutual solubility of its components. Thus, only three associates, i.e. CaSi, CaSi₂, FeSi, are valid out of five possible in the triple system Ca-Si-Fe in the range with high concentrations of silicon. A calculation under this condition of thermodynamic properties of calcium silicon melts for CK10-CK30 grades has shown that activity of silicon in them at temperature 1873 K constituted 0.6 - 0.7, whereas activities of other components do not exceed 0.01.

Keywords: associate, intermetallic, database, model of ideal associated solution, Ca-Si system, Fe-Si system, calcium silicon.

DOI: 10.17073/0368-0797-2019-12-957-963

REFERENCES

- 1. Prigogine I., Defay R. *Chemical thermodynamics*. London: Longman, 1967.
- Berdnikov V.I., Gudim Yu.A. Forecasting of thermodynamic properties of liquid intermetallic solutions. *Izvestiya. Ferrous Metallur*gy. 2014, vol. 57, no. 7, pp. 34–38. (In Russ.).
- Berdnikov V.I., Gudim Yu.A. Identification of associates in liquid binary solutions. *Izvestiya. Ferrous Metallurgy*. 2014, vol. 57, no. 11, pp. 60–65. (In Russ.).
- Berdnikov V.I., Gudim Yu.A. The thermodynamic model of ideal associated solutions. *Izvestiya. Ferrous Metallurgy*. 2015, vol. 58, no. 7, pp. 513–519. (In Russ.).
- Berdnikov V.I., Gudim Yu.A. Identification of associates of binary metal solutions in analytical form. *Izvestiya. Ferrous Metallurgy*. 2017, vol. 60, no. 2. pp. 151–156. (In Russ.).
- 6. Wynnyckyi J.R., Pidgeon L.M. Activities in the Ca–Si system. *Met. Trans.* 1971, no. 4, pp. 975–978.
- 7. Durrer R., Folkert G. *Metallurgie der Ferrolegierungen*. Berlin: Springer-Verlag, 1972, 700 p. (In Germ.).
- 8. Yakushevich N.F., Galevskii G.V. Vzaimodeistvie ugleroda s oksidami kal'tsiya, kremniya, alyuminiya [Interaction of carbon with

oxides of calcium, silicon, aluminum]. Novokuznetsk: izd. SibGIU, 1999, 250 p. (In Russ.).

- 9. Manfrinetti P., Fornasini M.L., Palenzona A. The phase diagram of the Ca–Si system. *Intermetallics*. 2003, vol. 8, no. 3, pp. 223–228.
- Senlin Cui, Manas Paliwal, In-Ho Jung. Thermodynamic optimization of Ca–Fe–Si system and its applications to metallurgical grade Si-refining process. *Metallurgical and Materials Transactions E*. 2014, vol. 1, no. 1, pp. 67–79.
- **11.** Antti Roine. *Database HSC Chemistry 6.* Pori (Finland): Research Oy Information Service, 2006.
- 12. Trusov B.G. *Baza dannykh i programmnyi kompleks TERRA, redaktsiya 6.3* (elektronnyi resurs) [Database and program complex TERRA, edition 6.3]. (In Russ.).
- 13. Moiseev G.K., Vatolin N.A., Marshuk L.A., Il'inykh N.I. Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (al'ternativnyi bank dannykh ASTRA. OWN) [Temperature dependences of the reduced Gibbs energy of some inorganic substances (alternative database ASTRA.OWN)]. Ekaterinburg: UrO RAN, 1997, 231 p. (In Russ.).
- Gurvich L.V., Veitz I.V. etc. *Thermodynamic properties of individual substances*. 4th ed., in 5 vols. New York: Hemisphere Pub Co., 1989.
- **15.** Alpatov A. V., Paderin S. N. *Raschet parametrov vzaimodeistviya cherez energiyu smesheniya* [Calculation of interaction parameters through mixing energy]. Available at URL: http://steelcast.ru/interaction_coefficients_calculation_02, 2011. (Accessed: 10.03.2019) (In Rus.).
- 16. Turdogan E.T., Yrieveson P. and Beisler J.F. Kinetic and equilibrium considerations for silicon reaction between silicate melts and graphite – saturated. Part 1: Reaction equilibrium. *Transaction of the Metallurgical Society of AIME*. 1963, vol. 227, no. 6, pp. 1258–1265.
- Elliott J.F., Gleiser M., Ramakrishna V. *Thermochemistry for steelmaking*. Vol. 2. London, 1963.
- **18.** Darken L.S., Gurry R.W. *Physical chemistry of metals*. New York: McGraw-Hill, 1953.
- Zubov V.L., Gasik M.I. *Elektrometallurgiya ferrosilitsiya* [Electrometallurgy of ferrosilicon]. Dnepropetrovsk: Sistemnye tekhnologii, 2002, 704 p. (In Russ.)
- 20. Vorob'ev A.A. Thermodynamic characteristics of Fe–Si melt at 1600 °C. *Izvestiya. Ferrous Metallurgy*. 2002, vol. 45, no. 2, pp. 12–17. (In Russ.).

Information about the authors:

V.I. Berdnikov, Cand. Sci. (Eng.), Assist. Professor, Senior Researcher (berdnikov-chel@mail.ru)
Yu.A. Gudim, Dr. Sci. (Eng.), Professor

> Received December 22, 2015 Revised October 15, 2019 Accepted October 22, 2019