ISSN: 0368-0797. Известия высших учебных заведений. Черная металлургия. 2019. Том 62. № 5. С. 394 – 406. © 2019. Кузнецов Ю.С., Качурина О.И.

УДК 669.1(075.8)

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ОКСИДОВ ЖЕЛЕЗА С ИСПОЛЬЗОВАНИЕМ УГЛЕРОДА И ПАРОВ ВОДЫ

Кузнецов Ю.С., к.т.н., доцент, профессор кафедры физической химии (kuznetcovys@susu.ac.ru) *Качурина О.И.*, к.х.н., доцент кафедры «Неорганическая химия» (oivk2013@mail.ru)

Южно-Уральский государственный университет (454080, Россия, Челябинск, пр. Ленина, 76)

Аннотация. Выполнен термодинамический анализ полного восстановления оксида железа при нагревании с изотермическими выдержками исходной системы «Fe₃O₄ (e_0 моль) – H₂O(b_0 моль) – C (избыток)». По характеру протекающих реакций процессы в системе можно разбить на четыре этапа. Первый этап, газификация углерода парами воды при температурах ниже 880 K, активирует протекание реакции водяного газа и диссоциации CO с образованием сажистого углерода. Состав получающейся газовой смеси «H₂–H₂O–CO–CO₂» зависит только от температуры. Расход углерода при 880 K составляет ~0,445 моль на 1 моль воды. Второй этап, восстановление Fe₃O₄ до вюстита FeO_{1+x} с разной степенью окисленности, протекает в интервале температур 880 – 917 K. При этом водород восстанавливает оксид при температурах выше 888 K. Доля оксида, восстановленного водородом в этом интервале температур, возрастает от нуля до ~63 %. Общее количество Fe₃O₄, восстановленного до вюстита при 917 K, составляет ~123 моля на 1 моль воды. Это возможно лишь при многократной регенерации восстановителей CO и H₂ по реакциям газификации углерода парами воды и диоксидом CO₂. Расход углерода составляет примерно 78 моль. На третьем этапе получающийся при 917 K вюстит FeO_{1,092} восстанавливается только монооксидом CO₂, расход углерода составляет примерно 78 моль. На четвертом этапе при изотермической выдержке ~955 K вюстит восстанавливается до железа. Вюстит восстанавливается только монооксидом CO₂, расход углерода в закрытой системе при 1 атм достаточно 1 моля воды. Общий расход углерода составляет ~353 моль на получение 368 моль Fe или ~0,21 кг/кг железа.

Ключевые слова: оксиды железа, восстановление, водяной газ, углерод, пары воды, газификация углерода, магнетит, вюстит.

DOI: 10.17073/0368-0797-2019-5-394-406

Восстановление оксидов металлов в газовых атмосферах, основой которых является водяной газ (ВГ) $H_2-H_2O-CO-CO_2$, в отсутствии или присутствии углерода в качестве самостоятельной фазы возможно при строго определенном составе и оптимальной динамике газовых потоков. Возможны различные технологии получения газовой смеси нужного состава [1 – 7]. Наиболее простым и малозатратным способом является нагревание в контакте с углеродом паров воды.

Для малотоннажных производств, переработки техногенных отходов, изменения фазового состава керамики [8] необходимы нетрадиционные технологии. В частности, в работах С.В. Дигонского [9–12] излагаются особенности восстановления оксидов в колпаковых нагревательных устройствах. Следует отметить необоснованность утверждения автора: «...принимая за основу ведущую роль в прямом восстановлении...газовых реакций, следует экспериментально обосновать... необходимость удержания газообразных веществ в слое восстанавливаемой шихты. Удержать водород ... в слое шихты можно различными способами, но простой метод – проводить прямое восстановление в куполообразном реак-

торе...». В экспериментах автор моделирует работу куполообразного реактора нагреванием перевернутого тигля, в котором слои восстанавливаемого оксида и твердого восстановителя разделены углеграфитовой тканью. Слой восстанавливаемого материала располагается над слоем углерода. На основании полученных данных автор делает спорный вывод – в верхних горизонтах удерживается в основном водород, а «тяжелые» газы отводятся из системы внизу тигля. Именно поэтому декларируется основная роль водорода в процессах восстановления оксидов. Однако, в соответствии с законом Лапласа, в поле сил тяготения соотношение концентраций компонентов неподвижной газовой смеси в нижних $(x_i)_o$ и верхних (x_i) слоях определяется формулами

$$p = p_{o}e^{-\frac{Mgh}{RT}}, \ \ln\left(\frac{p_{o}}{p}\right) = \frac{Mgh}{RT}, \ \ln\left(\frac{(x_{i})_{o}}{x_{i}}\right) = \frac{M_{i}gh}{RT}$$

где M_i – молярная масса компонента, кг/моль; g – ускорение силы тяжести, м²/с; h – высота, м. Для условий эксперимента автора ($h \approx 0,2$ м, T = 1373 K) получаем в стационарном режиме для водорода и диоксида углерода:

/

Δ

$$\ln\left(\frac{\left(x_{\rm H_2}\right)_{\rm o}}{x_{\rm H_2}}\right) = \frac{2 \cdot 10^{-3} \cdot 9,81 \cdot 0,2}{8,314 \cdot 1373} = 3,44 \cdot 10^{-7},$$
$$\frac{\left(x_{\rm H_2}\right)_{\rm o}}{x_{\rm H_2}} = 1,000000344;$$
$$\ln\left(\frac{\left(x_{\rm CO_2}\right)_{\rm o}}{x_{\rm CO_2}}\right) = \frac{44 \cdot 10^{-3} \cdot 9,81 \cdot 0,2}{8,314 \cdot 1373} = 7,56 \cdot 10^{-6},$$
$$\frac{\left(x_{\rm CO_2}\right)_{\rm o}}{x_{\rm CO_2}} = 1,00000756.$$

Разница концентраций под «колпаком» по высоте исчезающе мала. Предположение автора об удержании водорода в верхних горизонтах реактора, да еще и в динамическом режиме, сомнительно, а оценка составов истекающих газов внизу «колпакового» устройства ошибочна. Нельзя разницу концентраций газов по высоте «колпака» объяснять и разными скоростями их фильтрации через слой углеродных гранул. Следует полагать равными составы газовой смеси и газа в верхних горизонтах «колпака». Это тем более вероятно, что в предлагаемых авторами «колпаковых» устройствах [11, 12] из-за постоянной подпитки системы парами воды имеет место проточная газовая атмосфера. Утверждение автора о преобладающем «...восстановлении оксидов атомарным (?) водородом, регенерируемым углеродистым восстановителем парами воды...» следует объяснять другими причинами.

В настоящей работе излагаются особенности процессов восстановления магнетита в закрытой системе «Fe₃O₄ – C(избыток) – H₂O» при нагревании с изотермическими выдержками. В соответствии с правилом фаз Гиббса получающиеся равновесные системы при заданном давлении имеют одну степень свободы и состав равновесной газовой фазы полностью определяется температурой. В расчетах варьировалось количество оксида и паров воды в исходной системе. Это позволило оценить важнейшие параметры процессов восстановления: состав получающегося водяного газа, его объем при заданном давлении, соотношение восстановительных способностей CO и H₂, количество продуктов восстановления и расход углерода.

Параметры получающихся систем оценивались расчетами с использованием констант равновесия [13 – 17] реакций водяного газа, газификации углерода, восстановления оксидов и реакций диссоциации H_2O и CO_2 ($\Delta r G_T^\circ$, Дж):

$$C + H_2O = CO + H_2,$$

$$\Delta_r G_T^{\circ}(1) = 135\ 560 - 144, 235T;$$

$$Fe_3O_4 + CO = 3FeO + CO_2,$$

$$\Delta_r G_T^{\circ}(2) = -10\ 0.34 - 38, 635T \ln T + 271, 78T;$$
(1)
(2)

$$Fe_{3}O_{4} + H_{2} = 3FeO + H_{2}O,$$
 (3)

$$\Delta_r G_T^{-}(3) = 25\ 546 - 38,635T\ln T + 238,315T;$$

$$C + CO_2 = 2CO,$$

$$\Delta_r G_T^{\circ}(4) = 172\ 140 - 177, 7T;$$
(4)

$$H_2O + CO = H_2 + CO_2,$$

$$\Delta_r G_T^{\circ}(5) = -36\ 580 + 33,465T;$$
 (5)

$$FeO + CO = Fe_{\alpha} + CO_{2},$$

$$_{r}G_{T}^{\circ}(6) = -21\ 785 + 25T,\ T < 1185\ \text{K};$$
 (6)

FeO + H₂ = Fe_{$$\alpha$$} + H₂O,
 $G_x^{\circ}(7) = 14\ 799 - 8.465T,\ T < 1185$ K: (7)

$$2H_2O = 2H_2 + O_2,$$

 $G_T^{\circ}(8) = 492\ 230 - 108.24T;$ (8)

$$2CO_2 = 2CO + O_2,$$

$$\Delta_r G_T^{\circ}(9) = 565\ 390 - 175,17T.$$
(9)

В работах [1,2] равновесные параметры систем «H₂ – $-H_2O - CO - CO_2 - C$ » определены расчетом совместных равновесий двух независимых из трех реакций (1), (4) и (5). Результаты расчетов возможных составов водяного газа представлены поверхностью пространственной диаграммы « $T-x_{\rm CO}-x_{\rm H_2}$ » (рис. 1) и графиком изотермических сечений этой диаграммы. Изотермы определяются нелинейным уравнением

$$x_{\rm H_2} = \frac{1 - x_{\rm CO} - \frac{x_{\rm CO}^2}{K_4}}{1 + \frac{x_{\rm CO}}{K_1}}$$
(10)

и соединяют точку с координатами $x_{\rm CO} = 0$, $x_{\rm H_2} = 1$ с точками, координаты которых определяют состав рав-

Рис. 1. Возможные соотношения между концентрациями H₂ и CO в водяном газе, равновесном с углеродом

Fig. 1. Possible correlations between concentrations of H_2 and CO in water gas in equilibrium with carbon

исходное со

новесного газа в двухкомпонентной двухфазной системе «CO-CO $_2-$ C». При T > 850 К можно с достаточной достоверностью соотношения между $x_{\rm H_2}$ и $x_{\rm CO}$ записать с помощью линейных уравнений

$$\frac{x_{\rm CO}}{1 - x_{\rm H_2}} = \frac{x_{\rm CO}^{\circ}}{1}, \ 1 - x_{\rm H_2} = \frac{x_{\rm CO}}{x_{\rm CO}^{\circ}}, \ x_{\rm H_2} = 1 - \frac{1}{x_{\rm CO}^{\circ}} x_{\rm CO}, \ (11)$$

где x_{CO}^{o} – концентрация, определяемая равновесием системы «С-СО-СО₂».

В присутствии углерода при T > 1100 К (рис. 2, линия 7) в равновесном с углеродом водяном газе сумма концентраций восстановителей ($x_{CO} + x_{H_2}$) близка к единице, т. е. водяной газ характеризуется высоким восстановительным потенциалом. Соотношение концентраций Н₂ и СО может быть любым и многообразие возможных составов водяного газа в контакте с углеродом предполагает необходимость решения практической задачи создание газовой атмосферы нужного состава. Самым простым из практически реализуемых является способ нагревания паров воды в контакте с углеродом. В этом случае реакция газификации (1) инициирует протекание реакции водяного газа (5) и реакции диссоциации

$$2CO \to CO_2 + C \tag{4*}$$

Рис. 2. Возможные параметры равновесия систем $(H_2 - H_2O - CO - CO_2 - C)$:

линии 1-8 определяют все возможные соотношения концентраций Н, и СО при T = 800 (1), 850 (2), 900 (3), 917 (4), 955 (5), 1000 (6), 1100 (7), 1700 К (8); линия NM определяет состояния, получающиеся при нагревании исходной смеси «H₂O - C»

> Fig. 2. Possible equilibrium parameters of the systems $"H_2 - H_2O - CO - CO_2 - C":$

lines 1 - 8 determine all possible ratios of H₂ and CO concentrations at T = 800(1), 850(2), 900(3), 917(4), 955(5), 1000(6), 1100(7),1700 K (8); line NM determines the condition resulting at heating of initial mixture " $H_2O - C$ "

с образованием сажистого углерода. Расчет результатов протекания трех реакций (1), (4*) и (5) связан с определением параметров совместного равновесия двух независимых реакций, например:

$$2CO = C + CO_{2}$$

исходное состояние – –
равновесное состояние $(y - 2s)$ s

 $C + H_2O = CO + H_2$ $b_0 -$ исходное состояние b_{o} — равновесное состояние $(b_{o} - y)$ (y - 2s)

Здесь во второй строке после уравнений реакций учитывается вклад каждой из реакций газификации в «расход» углерода:

 $-y = n_{C}(1)$ – количество углерода, вступившего в реакцию (1);

 $-s^* = n_C(4^*)$ – количество углерода, получившегося по реакции (4^{*}).

Равновесное состояние « $H_2(a) - H_2O(b) - CO(c) -$ - O₂ (*d* моль) - С» определяется следующими соотношениями при P = 1 атм:

$$K_1 = \frac{y(y-2s)}{(b_0 - y)\Sigma}, \ K_4 = \frac{(y-2s)^2}{s\Sigma}, \ \Sigma = b_0 + y - s$$

Из решения этой системы уравнений вытекает связь между количеством образовавшегося сажистого и газифицированного углерода:

$$s = \frac{y}{2} - \frac{y^2}{\frac{4K_1}{K_4}(b_0 - y) + 2y}, \quad \frac{K_1}{K_4} = K_5.$$

В расчетах величин s, y и состава равновесной газовой фазы

$$x_{H_2} = \frac{y}{\Sigma}, x_{H_2O} = \frac{b_o - y}{\Sigma}, x_{CO} = \frac{y - 2s}{\Sigma}, x_{CO_2} = \frac{s}{\Sigma}$$

есть такая особенность - соотношение между вычисленными для разных температур концентрациями *x*_н, и *x*_{со} должно удовлетворять уравнению (10) или (11) в зависимости от требуемой точности вычислений. В табл. 1 приведены результаты расчетов составов водяного газа, получающегося при нагревании до 850 - 1500 K смеси «H₂O($b_0 = 1 \text{ моль}$) – C(избыток)». Для любого другого исходного количества водяных паров пропорционально изменяются количество газов и расход углерода, а концентрации H2 и CO определяются политермической кривой NM (рис. 2). Точка N характеризует исходную систему «H₂O - C», а точка M - газовую смесь « $H_2(\sim 50) - CO(\sim 50$ мол. %)» со следами H_2O и СО₂, получающуюся при нагревании до температур выше 1100 К. Суммарный «расход» углерода $\sum n_{c} = y - s^{*}$

Таблица 1

Параметры равновесия систем « $H_2(a) - H_2O(b) - CO(c) - CO_2(d \text{ моль}) - C$ », получающихся при нагревании исходной смеси « $H_2O(1 \text{ моль}) - C$ », P = 1 атм

Table 1. Equilibrium parameters of the systems " $H_2(a) - H_2O(b) - CO(c) - CO_2(d \text{ mol}) - C$ ",
resulting at heating of starting mixture "H ₂ O (1 mol) – C ", <i>P</i> = 1 atm

Т, К	850	900	917	955	1000	1100	1300	1500
$y = n_{\rm C}(1)$	0,6265	0,7265	0,7582	0,8231	0,8860	0,9640	0,9960	0,9993
$s^* = n_{\rm C}(4^*)$	0,24760	0,23280	0,21990	0,17890	0,12070	0,03270	0,00210	0,00023
$\sum n_{\rm C} = y - s^*$	0,3789	0,4937	0,5383	0,6442	0,7653	0,9313	0,9939	0,9990
а, моль	0,6265	0,7265	0,7582	0,8231	0,8860	0,9640	0,9960	0,9993
<i>b</i> , моль	0,3735	0,2735	0,2418	0,1769	0,1140	0,0360	0,0040	0,0007
С, МОЛЬ	0,1313	0,2608	0,3184	0,4652	0,6447	0,8986	0,9918	0,9988
d, моль	0,24760	0,23280	0,21990	0,17890	0,12070	0,03270	0,00210	0,00023
∑, моль	1,3789	1,4936	1,5383	1,6441	1,7654	1,9313	1,9939	1,9991
<i>V</i> , л	96,11	110,23	115,70	128,80	144,80	174,20	212,60	245,90
x	0,4543	0,4864	0,4929	0,5007	0,5019	0,4991	0,4994	0,4999
x _{H₂O}	0,2709	0,1831	0,1573	0,1076	0,0646	0,0186	0,0021	0,0004
x _{co}	0,0953	0,1746	0,2069	0,2829	0,3652	0,4653	0,4974	0,4996
x _{CO2}	0,1795	0,1559	0,1429	0,1088	0,0683	0,0170	0,0011	0,0001
$(\lg p_{O_2})_{B\Gamma}$	-25,04	-23,76	-23,37	-22,60	-21,84	-20,57	-18,89	-17,68
$(\lg p_{O_2})_{Fe_3O_4}$	- 25,53	-23,43	-22,76	-21,37	-19,84	-16,87	-12,21	-8,71
$(\lg p_{O_2})^*$	-24,41	- 23,14	-22,76	-21,99	- 21,24	-19,97	- 18,30	- 17,14
Примечание. $(\lg p_{0})^{*}$ – кислородный потенциал системы CO ₂ – CO – C.								

определяется затратами на газификацию парами воды и величиной получившегося сажистого углерода и не превышает исходного количества паров воды (рис. 3).

Проанализируем теперь процессы, протекающие при нагревании исходной системы «Fe₃O₄ – - H₂O – C(избыток)». Количественно окислительновосстановительные свойства газовой фазы оцениваются кислородным потенциалом $\pi = RT \ln p_{O_2}$ [13 – 18]. Уравнения для lg(p_{O_2} , атм) газовой смеси, содержащей пары воды или(и) диоксид углерода, получаются из анализа равновесия реакций диссоциации H₂O и CO₂ [1 – 3]:

$$\lg\left[p_{O_{2}}, \text{ arm}\right] = 2\lg\left(\frac{x_{H_{2}O}}{x_{H_{2}}}\right) + \lg K_{p}(8) =$$
$$= 2\lg\left(\frac{x_{H_{2}O}}{x_{H_{2}}}\right) - \frac{25\ 708}{T} + 5,653; \tag{12}$$

$$lg[p_{O_2}, a_{TM}] = 2 lg\left(\frac{x_{CO_2}}{x_{CO}}\right) + lg K_p(9) =$$
$$= 2 lg\left(\frac{x_{CO_2}}{x_{CO}}\right) - \frac{29\ 529}{T} + 9,149.$$
(13)

Термодинамическая прочность оксида Fe₃O₄ [14]

$$2 \text{Fe}_{3}\text{O}_{4} = 6 \text{FeO} + \text{O}_{2},$$
$$\Delta r G_{r}^{\circ} = 545\ 323 - 77,27T \ln T + 369,39T$$

количественно оценивается величиной кислородного потенциала $\lg(p_{O_2})_{\operatorname{Fe}_3O_4}$.

Из сравнения $\lg(p_{O_2})_{Fe_3O_4}$ с потенциалом системы «CO-CO₂-C» ($\lg p_{O_2}$)* следует, что Fe_3O_4 восстанавливается при 917 К (табл. 1, рис. 4). Из сравнения величин $\lg(p_{O_2})_{Fe_3O_4}$ с потенциалами системы «H₂-H₂O-CO--CO₂-C» ($\lg p_{O_2}$)_{ВГ} следует, что Fe_3O_4 начинает восстанавливаться при более низкой температуре и это следует объяснять присутствием водорода.

Термодинамический анализ системы «Fe₃O₄ – H₂O – C(избыток)» базируется на вышеприведенной информации и результатах ранее опубликованных исследований [3, 19]. Параметры равновесия оксидов железа с водяным газом и углеродом можно представить поверхностью пространственной диаграммы в координатах $T-x_{\rm CO}-x_{\rm H_2}$ (рис. 5) и проекцией линий этой поверхности на координатную плоскость $x_{\rm CO}-x_{\rm H_2}$ (рис. 6). Наложением рис. 2 и 6 получается рис. 7 – только по достижении температуры, соответствующей точке *K*, должно

у – количество газифицированного углерода по реакции (1); количество образовавшегося сажистого углерода, реакция (4^{*}); $\sum n_{\rm C}$ – суммарное количество газифицированного углерода;

s – количество газифицированного углерода по реакции (4) при нагревании системы «СО₂ (1 моль) – С»

Fig. 3. Quantity of gasified carbon at heating of the system "H₂O (1 mole) – C":

y – amount of carbon gasified by reaction (1); s^* – amount of formed black carbon, reaction (4^{*}); $\sum n_{\rm C}$ – total amount of gasified carbon; s – amount of carbon gasified by reaction (4) at heating of the system " $CO_2(1 \text{ mole}) - C$ "

начаться восстановление Fe₃O₄. Для определения этой температуры необходимо рассчитать параметры совместного равновесия трех независимых реакций из множества возможных, например (1) - (3):

$$Fe_{3}O_{4} + CO = 3 FeO + CO_{2}$$

$$e_{0} - - -$$

$$c \quad d$$

$$(y-x) \quad x$$

x

Рис. 4. Параметры равновесия систем «Fe – O – C»: $AB - \langle Fe_3O_4 - CO - CO_2 - C \rangle$; $BC - \langle FeO_{1+x} - CO - CO_2 - C \rangle$; $CD - \langle \operatorname{Fe}_{\alpha}(C) - \operatorname{CO} - \operatorname{CO}_{2} - C \rangle; DE - \langle \operatorname{Fe}_{\gamma}(C) - \operatorname{CO} - \operatorname{CO}_{2} - C \rangle$

Fig. 4. Equilibrium parameters of the systems "Fe - O - C": line AB - "Fe₃O₄ - CO - CO₂ - C", BC - "FeO_{1+x} - CO - CO₂ - C", $CD - "Fe_{\alpha}(C) - CO - CO_2 - C", DE - "Fe_{\gamma}(C) - CO - CO_2 - C"$

$$Fe_{3}O_{4} + H_{2} = 3 FeO + H_{2}O$$

$$e_{o} - - b_{o}$$

$$a - b$$

$$(y-z) - (b_{o} - y + z)$$

$$C + H_{2}O = H_{2} + CO$$

$$b_{o} - - -$$

$$b - a - c$$

$$(b_{o} - y + z) - (y - z) - (y - z)$$

В первой строке после уравнений реакций приведены числа молей в исходном состоянии (углерод в избытке), во второй строке – числа молей газов в равновесном состоянии. В третьей строке – числа молей газов в равновесном состоянии с учетом расхода паров

Рис. 6. Проекции линий и изотерм диаграммы фазовых равновесий в системах «оксиды железа – $H_2 - H_2O - CO - CO_2 - C$ »: области (Fe₃O₄ + C) – x_{CO} и x_{H_2} при температурах ниже 917 K; (FeO + C) – x_{CO} и x_{H_2} при 850 – 955 K; (Fe_a + C) – x_{CO} и x_{H_2} до 1011 K

Fig. 6. Projections of lines and isotherms of diagram of phase equilibria in systems "iron oxides $-H_2 - H_2O - CO - CO_2 - C$ ": zones (Fe₃O₄ + C) $-x_{CO}$ and x_{H_2} at temperatures below 917 K; (FeO + C) $-x_{CO}$ and x_{H_2} at 917 – 955 K; (Fe_a + C) $-x_{CO}$ and x_{H_2} at temperatures over 955 K

воды и углерода (y), реакция (1), расхода монооксида углерода (x), реакция (2) и расхода водорода z, реакция (3). Величины x и z определяют количество восстановленного до FeO оксида Fe₃O монооксидом CO и водородом. Параметры равновесия определяются следующими уравнениями:

$$\Sigma = n_{\rm H_2} + n_{\rm H_2O} + n_{\rm CO} + n_{\rm CO_2} =$$

= $(y - z) + (b_{\rm o} - y + z) + (y - x) + x = b_{\rm o} + y;$ (14)

$$x_{\rm CO} = \frac{y - x}{b_{\rm o} + y}, \ x_{\rm CO_2} = \frac{x}{b_{\rm o} + y},$$
(15)

$$x_{\rm H_2} = \frac{y-z}{b_{\rm o}+y}, \ x_{\rm H_2O} = \frac{b_{\rm o}+z-y}{b_{\rm o}+y};$$
 (13)

$$K_{1} = \frac{(y-x)(y-z)}{(b_{0}+y)(b_{0}+z-y)}P,$$

$$K_{2} = \frac{x}{y-x}, K_{3} = \frac{b_{0}+z-y}{y-z}.$$
(16)

Решив систему этих уравнений для P = 1 атм, получаем:

$$y = \frac{b_{\rm o}}{N}, \ x = \frac{K_2}{(1+K_2)N} b_{\rm o},$$

$$z = \left(\frac{1}{N} - \frac{1}{1+K_3}\right) b_{\rm o} = \frac{(1+K_3) - N}{N(1+K_3)} b_{\rm o}.$$
(17)

Рис. 7. Изменение состава газовой фазы при нагревании различных количеств Fe₃O₄ в контакте с парами воды и углеродом

Fig. 7. Changes in composition of the gas phase when heated different amounts of Fe_3O_4 in contact with water vapour and carbon

В этих соотношениях зависящая от температуры и давления величина

$$N = \frac{P}{(1+K_2)K_3K_1} - 1.$$
(18)

Реакции газификации углерода протекают с увеличением количества газов, поэтому при постоянном давлении увеличивается объем системы

$$V = \frac{(b_0 + y)RT}{P}.$$
 (19)

Результаты расчетов по уравнениям (17) - (19) для частного случая (1 моль H₂O и давление 1 атм) приведены в последнем столбце табл. 2 и на рис. 7. Точки на политермической кривой *NK* определяют количественные характеристики возможных равновесных состояний, получающихся после изотермических выдержек при температурах ниже $T_{\kappa} = 880$ К.

Таким образом, на *первом этапе* нагревания исходной системы (точка N на рис. 7) по реакции газификации (1) расходуется 0,6875 моля углерода и образуется 0,2429 моля сажистого углерода по реакции диссоциации СО (4^{*}). При увеличении в исходной системе паров воды ($b_0 > 1$), количество газифицированного углерода и компонентов газовой фазы растет прямо пропорционально b_0 . Восстановление оксида Fe₃O₄ в образующемся водяном газе начинается при 880 K, а концентрации компонентов получившейся при 880 K газовой фазы соответствуют равновесию пяти возможных реакций (1) – (5) (табл. 3).

Таблица 2

Параметры систем, получающихся при нагревании системы «Fe₃O₄ – H₂O (*b*₀ = 1 моль) – C», *P* = 1 атм

Table 2. Parameters of the systems, resulting at heating of the system "Fe₃O₄ – H₂O($b_0 = 1 \text{ mol}$) – C", P = 1 atm

Т, К	850	860	870	880	$\sim \! 880^{**}$
$y = n_{\rm C}(1)$	0,6265	0,6472	0,6675	0,6875	_
$s^* = n_{\rm C}(4^*)$	0,2476	0,2474	0,2458	0,2429	—
$\sum n_{\rm C} = y - s^*$	0,3789	0,3998	0,4217	0,4446	_
$(\sum n_{\rm C})^{**}$	_	_	_	_	~0,4446
<i>x</i> **	_	_	_	_	0,2422
Z ^{**}	_	—	—	—	-0,2422
а, моль	0,6265	0,6472	0,6675	0,6875	0,6875
b, моль	0,3735	0,3528	0,3325	0,3125	0,3125
с, моль	0,1313	0,1524	0,1758	0,2017	0,2017
<i>d</i> , моль	0,2476	0,2474	0,2458	0,2429	0,2429
Σ	1,3789	1,3998	1,4217	1,4446	1,4446
<i>V</i> , л	96,1	98,7	101,4	104,4	104,4
x_{H_2}	0,4543	0,4624	0,4695	0,4759	0,4749
x _{H2O}	0,2709	0,2520	0,2339	0,2163	0,2163
x _{co}	0,0953	0,1089	0,1237	0,1396	0,1399
x _{CO2}	0,1795	0,1767	0,1729	0,1682	0,1689
$n_{\rm Fe_3O_4}(\rm CO)$	_	_	-	_	0,2422
$n_{\mathrm{Fe_3O_4}}(\mathrm{H_2})$	-	_	-	_	-0,2422
$\sum n_{\mathrm{Fe_3O_4}}$	-	-	-	-	0

П р и м е ч а н и е. Последний столбец – параметры получающейся системы при температуре, на доли градуса превышающей 880 К.

Установившееся при ~880 К равновесие

«Fe₃O₄(
$$e_0$$
 моль) – FeO(следы) – H₂(0,6875) –
- H₂O(0,3125) – CO(0,2017) – CO₂(0,2429) – C» (20)

можно нарушить повышением температуры.

Второй этап – восстановление Fe_3O_4 до «FeO» протекает при 880 – 917 К. Изменения параметров системы в этом интервале температур определяются расчетами совместного равновесия тех же трех независимых реакций (1) – (3). Решается система трех уравнений:

$$K_{1} = \frac{(c_{1} + y - x)(a_{1} + y - z)}{(b_{1} - y + x)(\Sigma_{1} + y)}P,$$

$$K_{2} = \frac{d_{1} + x}{c_{1} + y - x}, K_{3} = \frac{b_{1} + z - y}{a_{1} + y - z},$$

где a_1, b_1, c_1, d_1 и Σ_1 – количество газов после первого этапа. Для частного случая P = 1 атм и неизменяющегося количества водорода $(a_1 + b_1) = 1$ моль получаем:

$$y = \frac{A\Sigma_{1} - (c_{1} + d_{1})}{1 - A}, \quad x = \frac{K_{2}(c_{1} + y) - d_{1}}{1 + K_{2}},$$

$$z = \frac{K_{3}a_{1} - b_{1} + (1 + K_{1})y}{1 + K_{3}},$$

$$x_{CO} = \frac{c_{1} + y - x}{\Sigma_{1} + y}, \quad x_{CO_{2}} = \frac{d_{1} + x}{\Sigma_{1} + y},$$

$$x_{H_{2}} = \frac{a_{1} + y - z}{\Sigma_{1} + y}, \quad x_{H_{2}O} = \frac{b_{1} - y + z}{\Sigma_{1} + y}.$$
(21)

В этих соотношениях зависящая от температуры величина

$$4 = (1 + K_2)K_3K_1.$$
(22)

Результаты расчетов представлены в табл. 3 (столбцы 2-6), а линией *KB* на рис. 7 показано изменение концентраций H₂ и CO в равновесной газовой фазе.

Отметим отличие восстановления Fe_3O_4 до «FeO» в атмосфере водяного газа от восстановления в системе « Fe_3O_4 -CO-CO₂-C» [1, 20] (рис. 4, 8). В смеси CO-CO₂ с концентрацией $x_{CO} = 0,419$ восстановление начинается и заканчивается при постоянной температуре 917 К с получением вюстита (нестехиометрического оксида $FeO_{1,092}$) (точка *B* на рис. 4). В интервале температур 917 – 955 К вюстит $FeO_{1,092}$ восстанавливается до $FeO_{1,054}$ (точка *C* на рис. 4, 8). При температуре 955 К вюстит $FeO_{1,054}$ восстанавливается до железа с небольшой, ~0,001 % (по массе) концентрацией углерода.

В более сложной системе (20) оксид Fe₃O₄ начинает восстанавливаться при 880 К с образованием

Рис. 8. Область гомогенности вюстита и изменение его состава при восстановлении $\operatorname{Fe_3O_4}$: $-\lg[p_{O_2}, \operatorname{atm}] = 21 \ (1); 23 \ (2); 25 \ (3)$

Fig. 8. Homogeneity range of wustite and change in its composition at Fe_3O_4 reduction: $-lg[p_{O_4}, atm] = 21$ (1), 23 (2), 25 (3)

Таблица З

Параметры систем, получающихся при изотермических выдержках 880 – 917 К исходной системы «Fe₃O₄(e₀ моль) – H₂(0,6875) – H₂O (0,3125) – CO (0,2017) – CO₂(0,2429) – C»

<i>Т</i> , К	~880	890	900	910	917	~955	~955
1	2	3	4	5	6	7	8
$\sum n_{\rm C}$	0,4469	0,7427	1,4071	3,9320	78,152	17,77	257
x	0,2422	0,4130	0,7953	2,2575	45,3559	14,1	368,7
Z	-0,2422	0,0761	0,7612	3,3069	77,5417	-0,082	~0
а	0,6871	0,6667	0,6459	0,6251	0,6103	0,6996	0,69957
b	0,3129	0,3333	0,3541	0,3749	0,3897	0, 3004	0,30043
С	0,2025	0,3292	0,6119	1,6745	32,7960	54,236	199,5
d	0,2422	0,4130	0,7953	2,2575	45,3559	41,686	153,3
$\sum n_i$	1,4447	1,7427	2,4072	4,9320	79,1520	96,922	353,8
<i>V</i> , л	104,4	127,18	177,65	368,3	5952	7586	28700
<i>x</i> _{H2}	0,4749	0,3825	0,2684	0,1267	0,0077	0,0072	0,0019
x _{H2O}	0,2163	0,1913	0,1471	0,0760	0,0049	0,0031	0,00082
x _{co}	0,1399	0,1892	0,2542	0,3395	0,4143	0,5596	0,5643
x _{CO2}	0,1689	0,2369	0,3304	0,4577	0,5731	0,4301	0,4330
n _{Fe₃O₄}	0*	0,4891*	1,5565*	5,5645*	122,9*	_	368,7**
n _{FeO}	0*	1,4673*	4,6695*	16,6935*	368,7*	_	368,7**

Table 3. Parameters of the systems resulting at isothermal holding at 880 – 917 K of the system "Fe₃O₄(e_0 mol) – H₂(0,6875) – H₂O (0,3125) – CO (0,2017) – CO₂(0,2429) – C"

Примечание. В столбце 8 – параметры после изотермической выдержки при ~955 К получившейся после третьего этапа системы «FeO_{1,054}(368,7) – $H_2(0,69957) - H_2O(0,30047) - -CO(54,236) - CO_2(41,686 моль) - C».$

* – восстановлено Fe₃O₄ (x + z) и получено FeO 3(x + z).

** – восстановлено FeO и получено Fe.

FeO_{1,082} (точка *K* на рис. 7, 8) [21 – 28]. И только при дальнейшем нагревании от 880 до 917 К оксид Fe₃O₄ продолжает восстанавливаться, при этом нестехиометрия вюстита увеличивается с 1,082 до 1,092 (вдоль линии *KB* на рис. 8). Изменяются и количество веществ, и концентрация компонентов газовой фазы (табл. 3, столбцы 2 – 6). Концентрация H₂ и H₂O уменьшается практически до нуля. Из результатов расчетов следует, что весь регенерируемый по реакции (1) водород расходуется на восстановление, тогда как регенерируемый по реакциям (1) и (4) монооксид CO накапливается. При любой температуре в интервале 880 – 917 К оксид Fe₃O₄ восстанавливается монооксидом CO (рис. 9). Объясняется это тем, что при 850 – 917 К в изменяющейся газовой атмосфере системы до наступления рав-

новесия фактическое соотношение $\left(\frac{x_{\rm CO}}{x_{\rm CO_2}}\right)_{\phi a \kappa \tau}$ меньше

константы равновесия реакции (2)

$$\Delta_r G_T(2) = RT \left[\ln \left(\frac{x_{\rm CO}}{x_{\rm CO_2}} \right)_{\rm dakr} - \ln K_2 \right] < 0,$$

поэтому Fe₃O₄ восстанавливается монооксидом углерода. До температуры 888 К восстановительная способность водорода равна нулю, так как

$$\Delta_r G_T(3) = RT \left[\ln \left(\frac{x_{\mathrm{H}_2\mathrm{O}}}{x_{\mathrm{H}_2}} \right)_{\mathrm{фakr}} - \ln K_3 \right] > 0.$$

При $T > 888 \text{ K} \Delta r G_T(3) < 0$ и Fe₃O₄ восстанавливается и водородом (рис. 9), а при 917 K доля оксида Fe₃O₄, восстановленного водородом, составляет

$$\frac{77,5417}{77,5417+45,3559} = 0,631$$
 (или 63,1 %).

Соотношение восстановительных способностей H_2 и СО повышается от нуля при 888 К до 1,71 при 917 К.

Общее количество восстановленного Fe_3O_4 при 917 К составляет 123 моль. Это возможно лишь при многократной регенерации восстановителей H_2 и СО по реакциям газификации. Общий расход углерода составляет 78,152 моль, а удельный расход 78,152/122,9 = = 0,6359 моль/моль или 0,0330 кг/кг оксида.

Рис. 9. Количество FeO, восстановленного монооксидом CO (3*x*) и водородом (3*z*) при нагревании системы «Fe₃O₄ – FeO – H₂O (*b*₀ моль) – C», *P* = 1 атм, исходное количество воды: *I* – *b*₂ = 0,014; *2* – 1; *3* – 2; *4* – 3 моль, 3*x* = 3*z* при температуре ~902 К, 3*z* = 0 при температуре ~888 К

Fig. 9. Quantity of FeO reduced by monoxide CO (3*x*) and hydrogen (3*z*) at heating of the system "Fe₃O₄ – FeO – H₂O (b_0 mol) – C", P = 1 atm, initial quantity of water:

 $1 - b_0 = 0.014$; 2 - 1; 3 - 2; 4 - 3 mole; 3x = 3z at the temperature ~902 K, 3z = 0 at ~888 K

Таким образом, для восстановления ~123 моль оксида Fe_3O_4 нагреванием до 917 К закрытой системы « $Fe_3O_4 - H_2O - C$ » при давлении 1 атм достаточно одного моля паров воды.

Третий этап – нагревание получившейся после второго этапа системы

Таблица 4

Параметры восстановления вюстита при различных е

Table 4. Reduction parameters of wustite at different e_{o}

<i>е</i> _о , моль	0,4891	1,5565	5,5645	122,9
<i>Т</i> , К	$890 \rightarrow 922$	$900 \rightarrow 938$	$910 \rightarrow 949$	917→954,87
$\sum n_{\rm C}$	0, 4159	1,2354	4,2709	$s \approx 257$
x	0,1178	0,3856	1,3430	368,7
Ζ	0,3693	1,1746	3,1938	~0
<i>а</i> ₄ , моль	0,7132	0,7067	0,7022	~0
$b_4^{}$, моль	0,2868	0,2963	0,2978	~0
<i>с</i> ₄ , моль	0,6272	1,4618	4,6024	199,5
d_4 , моль	0,5308	1,1806	3,6005	153,3
Σ_4	2,1581	3,6423	9,2029	353.8
<i>V</i> , л	163,3	280,2	716,1	28 700
<i>x</i> _{H₂}	0,3305	0,1940	0,0763	~0
x _{H2O}	0,1329	0,0805	0,0324	~0
x _{co}	0,2906	0,4013	0,5001	0,5643
x _{CO₂}	0,2459	0,3241	0,3912	0,4330
$\sum n_{\rm Fe}$	1,4673	4,6695	16,6935	368,7

от ~917 до ~955 К. Вюстит, восстанавливающийся до железа при 955 К, имеет состав FeO_{1,054} (рис. 8) [24 – 28]. При нагревании вюстита FeO_{1,092} от температуры 917 до 955 К происходит уменьшение нестехиометрии с 1,092 до 1,054, изменяются и концентрация и количество компонентов газовой смеси, расходуется углерод. Полная оценка этого процесса требует сложных расчетов, который невозможен без дополнительной информации о соотношении состава вюстита, температуры и $-\lg(p_{O_2})$ [17]. Возможна упрощенная количественная оценка изменения параметров перехода системы

«FeO_{1,092} (368,7 моль) –
$$H_2(a_2) - H_2O(b_2) - CO(c_2) - - CO_2(d_2) - CO_2(d_2) - C \gg$$

при изотермической выдержке ~955 К в состояние

«FeO_{1,054} (368,7 моль) –
$$H_2(a_3) - H_2O(b_3) - O(c_3) - CO_2(d_3) - C$$
».

При выполнении расчетов учитывалось следующее. Восстановление вюстита $FeO_{1,092}$ (точка *B*) до $FeO_{1,054}$ (точка *C* на рис. 7) протекает в системе с незначительными количествами H₂ и H₂O. Изменение газовой фазы при восстановлении вюстита в результате повышения температуры определяется линией *BC*, практически совпадающей с осью координат, т. е. заметно увеличивается концентрация CO и уменьшается концентрация CO₂. Это возможно лишь при существенном возрастании роли реакции газификация углерода диоксидом CO₂ (4).

В результате всех возможных реакций изменятся количество газов:

$$a_3 = a_2 + \Delta a_3, b_3 = b_2 + \Delta b_3, c_3 = c_2 + \Delta c_3, d_3 = d_2 + \Delta d_3.$$

С учетом материального баланса по водороду имеем:

$$a_3 + b_3 = a_2 + b_2 = 1$$
 моль, $\Delta a_3 = -\Delta b_3$

Из материального баланса по кислороду для реакций восстановления (7) и (6):

$$\text{(26,3158FeO}_{1,092} + \text{H}_2 = 26,3158\text{FeO}_{1,054} + \text{H}_2\text{O}\text{)},$$

$$\text{(26,3158FeO}_{1,092} + \text{CO} = 26,3158\text{FeO}_{1,054} + \text{CO}_2\text{)},$$

следует

$$(b_3 + c_3 + 2d_3) = (b_2 + c_2 + 2d_2) + 368,7 \cdot (1,092 - 1,054),$$

т. е. количество перешедшего в газовую фазу кислорода равно

368,7
$$\cdot$$
(1,092 – 1,054) = 14,01 моль = $\Delta b_3 + \Delta c_3 + 2\Delta d_3$.

Величины a_3, b_3, c_3 и d_3 должны удовлетворять константам равновесия реакций восстановления (6) и (7) при температуре ~955 К:

$$K_7 = \frac{b_3}{a_3} = \frac{b_2 + \Delta b_3}{a_2 + \Delta a_3} = 0,4293,$$
$$K_6 = \frac{d_3}{c_3} = \frac{d_2 + \Delta d_3}{c_2 + \Delta c_3} = 0,7686.$$

Решение системы полученных уравнений дает следующие параметры системы после третьего этапа:

$$\Delta a_3 = -0,0893, \Delta b_3 = 0,0893, \Delta c_3 = 21,44,$$

 $\Delta d_3 = -3,67$ моль;

$$a_3 = 0,6996, b_3 = 0,3004, c_3 = 54,236, d_3 = 41,686,$$

 $\Sigma_3 = 96,922$ моль;

$$x_{\rm H_2} = 0,0072, x_{\rm H_2O} = 0,0031, x_{\rm CO} = 0,5596,$$

 $x_{\rm CO_2} = 0,4301$ (табл. 3, столбец 7).

Расчеты расхода углерода и восстановительных способностей H_2 и СО по отношению к вюститу базируются на материальном балансе компонентов водяного газа, который составляется с учетом величин $a_2 = 0,6103, b_2 = 0,3897, c_2 = 32,796, d_2 = 45,3559,$

 $a_3 = 0,6996, b_3 = 0,3004, c_3 = 54,236, d_3 = 41,686$ моль, расхода H₂ и CO на восстановление z и x, количества газифицированного углерода y, а также CO₂ и CO, затраченных и полученных по реакции (4):

$$a_3 \approx a_2 - z, b_3 \approx b_2 + z, c_3 \approx c_2 - x + 2y, d_3 \approx d_2 + x - y.$$

Окончательно получаем: для расхода водорода $z = -\Delta a_3 \approx 0,0892$ моль; для расхода СО $x = \Delta c_3 + 2\Delta d_3 \approx 21,44 - 2 \cdot 3,67 = 14,1$ моль; для расхода углерода $y = (\Sigma n_C)_3 \approx \Delta c_3 + \Delta d_3 \approx 21,44 - 3,67 = 17,77$ моль; соотношение восстановительных способностей H₂ и СО близко к нулю. Вюстит восстанавливается только оксидом СО.

Проверка. Равновесные параметры системы при ~955 К вычислялись с использованием справочной информации для реакций (6) и (7). Определенные параметры соответствуют константам равновесия еще трех возможных в анализируемой системе реакций (1), (4) и (5):

$$K_5 = \frac{x_{\rm H_2O} x_{\rm CO}}{x_{\rm H_2} x_{\rm CO_2}} = \frac{0,0031 \cdot 0,5595}{0,0072 \cdot 0,4302} =$$

= 0,5600 (~0,5584 – справочные данные);

$$K_4 = \frac{x_{CO}^2}{x_{CO_2}} = \frac{0,5595^2}{0,4302} = 0,7277 \ (\sim 0,7336);$$

$$K_1 = \frac{x_{H_2}x_{CO}}{x_{H_2O}} = \frac{0,0072 \cdot 0,5595}{0,0031} = 1,2995 \ (\sim 1,3136).$$

Вычисленный общий расход углерода на третьем этапе 17,7 моль можно получить и такими рассуждениями. Реакции восстановления и реакция водяного газа не изменяют количество углерода в газовой фазе. Лишь протекание реакций газификации может привести к изменению количества углерода в газовой фазе. Следовательно, общий расход углерода на третьем этапе можно определить по разности концентраций СО и СО₂ в конце и начале третьего этапа (табл. 3):

$$\begin{split} & \left(\Sigma n_{\rm C}\right)_3 = \left[\frac{V}{RT} \left(x_{\rm CO} + x_{\rm CO_2}\right)\right]_3 - \left[\frac{V}{RT} \left(x_{\rm CO} + x_{\rm CO_2}\right)\right]_2 \approx \\ & \approx \frac{7586}{0,082 \cdot 955} \cdot 0,9897 - \frac{5952}{0,082 \cdot 955} \cdot 0,9874 = 17,7 \text{ моль.} \end{split}$$

Из предположения о газификации углерода только диоксидом CO₂ и вычисленного расхода углерода17,7 моль следует, что образуется 35,4 моль CO. Расход этого газа на восстановление вюстита 14,1 моль. Следовательно, в системе накапливается 21,3 моль CO. Эта цифра почти совпадает с величиной $\Delta c_3 = 21,44$ моль, вычисленной с учетом реакции газификации (4). Пары воды практически не газифицируют углерод.

Четвертый этап. При изотермической выдержке ~ 955 К системы

полностью восстанавливается 368,7 моль вюстита FeO_{1,054}. Упрощенный расчет без учета нестехиометрии, газификации углерода парами воды и восстановления вюстита FeO_{1,054} водородом состоит в оценке равновесий двух реакций:

$$C + CO_{2} = 2CO FeO + CO = Fe + CO_{2}
d_{3} c_{3} c_{3} c_{3} d_{3}
(d_{3}-s+x) (c_{3}-x+2s) (c_{3}-x+2s) (d_{3}-s+x)$$

В первой строке после уравнений химических реакций – числа молей газов в состоянии, получившемся после третьего этапа; во второй строке – числа молей двух компонентов газовой фазы после завершения восстановления: s – количество затраченного углерода; 2s – количество СО, получившегося по реакции газификации (4); $x \approx 368,7$ моль – количество оксида СО, затраченного на восстановление (числа молей получившихся железа или диоксида СО₂).

Из системы трех уравнений

$$K_{6} = \frac{d_{3} - s + x}{c_{3} - x + 2s}, K_{4} = \frac{(c_{3} - x + 2s)^{2}}{(d_{3} - s + x)\Sigma_{4}},$$
$$\Sigma_{4} = n_{CO} + n_{CO_{2}} = c_{3} + d_{3} + s$$

определяется соотношение между s и x.

Окончательно получаем (табл. 3, столбец 8) для расхода углерода на газификацию

$$s = \frac{K_4 K_6 (c_3 + d_3) - c_3 + 368,7}{2 - K_4 K_6} \approx 271$$
 моль.

Количество газов в системе после завершения восстановления определяется с использованием баланса по кислороду

$$368.7 \cdot 1.054 + b_3 + c_3 + 2d_3 =$$

= $b_4 + (c_3 - x + 2s) + 2(d_3 - s + x).$

Вернемся ко второму этапу (табл. 3). В результате совокупности всех процессов в поэтапно нагреваемой закрытой системе создаются условия полного восстановления 122,9 моль Fe_3O_4 . При этом достаточно ввести в систему 1 моль паров воды. При уменьшении начального количества оксида в исходной системе « Fe_3O_4 ($e_o < 122,9$ моль) – $H_2O(1$ моль) – C(избыток)» не изменяются параметры начала восстановления (880 K), но изменяются при нагревании параметры промежуточных равновесных состояний (табл. 4, рис. 7).

Если $e_0 = 0,4891$ моль, Fe₃O₄ восстанавливается полностью до FeO_{1,085} при 890 K, FeO_{1,085} до FeO_{1,056} в интервале температур 890 – 922 K, FeO_{1,056} до FeO_{1,053} в интервале температур 922 – 955 К, FeO_{1,054} до Fe при 955 К. Изменение состава вюстита определяется линией *KK'L'C* (рис. 8).

Если $e_0 = 1,5565$ моль, Fe₃O₄ восстанавливается до FeO_{1,089} при 900 K, FeO_{1,089} до FeO_{1,056} в интервале температур 900 – 938 K, FeO_{1,056} до FeO_{1,053} в интервале температур 938 – 955 K, FeO_{1,053} до Fe при 955 K (линия *KK"L"C*).

Если $e_0 = 5,5645$ моль, Fe₃O₄ восстанавливается до FeO_{1,091} при 910 K, FeO_{1,091} до FeO_{1,055} при температурах 910 – 949 K, FeO_{1,055} до FeO_{1,054} в интервале температур 949 – 955 K, FeO_{1,053} до Fe при 955 K (линия *KK*^m*L*^m*C*).

Если $e_0 = 122,9$ моль, Fe_3O_4 восстанавливается до $FeO_{1,092}$ при 917 К, $FeO_{1,092}$ до $FeO_{1,054}$ в интервале температур 917 – 955 К, $FeO_{1,054}$ до Fe при 955 К (линия *KBC*). При этом затрачивается ~353,3 моль углерода. Минимальный удельный расход: 353,3/368,7 = = 0,958 моль/моль Fe или $0,958 \times 12/55,847 = ~0,21$ кг/кг железа.

Выводы. Технологически простым способом получения восстановительной по отношению к оксидам металлов газовой смеси является нагревание в контакте с углеродом водяного пара. Состав получающегося водяного газа определяется только температурой нагрева. При нагревании паров воды в контакте с углеродом в закрытой системе при давлении 1 атм до температур выше 1100 К получается газовая смесь газов-восстановителей с равными концентрациями $x_{\rm CO} = x_{\rm H_2} \approx 0,5$ со следами CO₂ и H₂O. Газификация углерода парами воды сопровождается процессом диссоциации CO с образованием сажистого углерода. Тем не менее, расход углерода (моль) равен количеству паров воды (моль).

Восстановление магнетита в закрытой системе «Fe₃O₄ – H₂O – C» начинается при 880 К и заканчивается в интервале температур 880 – 917 К в зависимости от соотношения количеств Fe₃O₄ и H₂O. Одного моля воды достаточно для восстановления ~123 моль Fe₃O₄ при изотермической выдержке ~917 К. Это объясняется своеобразной «восстановительно-газификационной каруселью», в результате которой весь получающийся водород H₂ расходуется на восстановление. Термодинамический анализ подтверждает существенное влияние водорода на восстановление оксидов железа [29 – 31].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Вяткин Г.П. Кузнецов Ю.С., Михайлов Г.Г., Качурина О.И. Термодинамика восстановления железа из оксидов. – Челябинск: ЮУрГУ, 2017 – 346 с.
- Кузнецов Ю.С., Качурина О.И. Равновесие водяного газа с углеродом // Вестник ЮУрГУ. Серия «Металлургия». 2015. Т. 15. № 4. С. 30 – 41.
- Михайлов Г.Г., Кузнецов Ю.С., Качурина О.И. Системный анализ процессов восстановления оксидов железа // Металлы. 2014. № 2. С.10 – 15.
- Строкина И.В., Якушевич Н.Ф. Изменения окислительно-восстановительных свойств газовой фазы системы С – О₂ – H₂ // Изв. вуз. Черная металлургия. 2011. № 6. С. 3 – 5.

- Гришин А.М., Симонов В.К., Щеглова И.С. О несоответствии кинетических закономерностей термодинамическим предпосылкам реакций газификации углерода H₂O и CO₂ // Изв. вуз. Черная металлургия. 2013. № 7. С. 64 – 67.
- Подгородецкий Г.С., Юсфин Ю.С., Сажин А.Ю. и др. Современные тенденции развития технологии производства генераторных газов из различных видов твердого топлива // Изв. вуз. Черная металлургия. 2015. Т. 58. № 6. С. 393 401.
- Kitamura I., Shibata K., Takeda R. In-flight reduction of Fe₂O₃, Cr₂O₃, TiO₂ and Al₂O₃ by Ar – H₂ and Ar – CH₄ plasma // ISIJ International. 1993. Vol. 33. No. 11. P.1150 – 1158.
- Теплов О.А. Кинетика низкотемпературного восстановления магнетитовых концентратов водородом // Металлы. 2012. № 1. С. 14 – 30.
- 9. Дигонский С.В., Тен В.В. Роль водорода в восстановлении оксидов металлов твердым углеродом // Альтернативная энергетика и экология. 2009. № 11(79). С. 45 – 55.
- ДигонскийС.В. Карботермическое восстановление оксидного сырья в неравновесных химических системах // Технология металлов. 2008. № 8. С. 3 – 7.
- Пат. 2111271 РФ. Способ получения металлов из их сульфидов / С.В. Дигонский, Н.А. Дубинин, Е.Д. Кравцов; заявл. 22.10.96, опубл. 20.05.98. Бюл. изобретений. 1998. № 14.
- Патент 2033431 РФ. Способ получения металлов / В.В. Дигонский, С.В. Дигонский, В.Е. Горбовский; заявл. 02.04.91, опубл. 20.04.95. Бюл. изобретений.1991. № 11.
- Muan F., Osborn E. F. Phase eqilibria among oxides in steelmaking. – New-York: Pergamon Press, 1965. – 418 p.
- Kubaschewski O, Evans E.L., Alcock C.B. Metallurgical Thermochemistry. – New-York: Pergamon Press, 1967. – 338 p.
- Казачков Е.А. Расчеты по теории металлургических процессов. – М.: Металлургия, 1988. – 288 с.
- 16. Теория металлургических процессов: Учебник для вузов / Д.И. Рыжонков, П.П. Арсентьев, В.В. Яковлев и др. – М.: Металлургия, 1989. – 392 с.
- Михайлов Г.Г., Леонович Б.И., Кузнецов Ю.С. Термодинамика металлургических процессов и систем. – М.: ИД МИСиС, 2009. – 520 с.
- Mikelsons J. Degree of oxidation of iron in slag as a function of the oxygen partial pressure of the gas phase // Archiv Eisenhuttenwessen. 1982. Vol. 53. No. 6. S. 251–265.

- 19. Вяткин Г.П., Михайлов Г.Г., Ю.С. Кузнецов и др. Системный анализ процессов восстановления оксидов железа в атмосфере водяного газа в присутствии углерода // Изв. вуз. Черная металлургия. 2012. № 2. С. 10 – 13.
- 20. Михайлов Г.Г., Кузнецов Ю.С., Качурина О.И., Чернуха А.С. Анализ фазовых равновесий в системе «оксиды железа – С – – СО – СО₂» // Вестник ЮУрГУ. Серия «Металлургия». 2013. Т. 13. № 1. С. 6 – 13.
- Spenser P.J., Kubaschewski O. A thermodynamic assessment of the iron – oxygen system // Calphad. 1978. Vol. 2. No. 2. P. 147 – 167.
- Wriedth H.A. The Fe O (iron oxygen) system // J. Phas. Equil. 1991. Vol. 12. No. 2. P. 170 – 200.
- Sundman B. An assessment of the Fe O system // J. Phas. Equil. 1991. Vol. 12. No. 3. P. 127 – 140.
- 24. Физико-химические свойства вюстита и его растворов / А.А. Лыкасов, К. Карел, А.Н. Мень и др. – Свердловск: УНЦАН СССР, 1987. – 230 с.
- Darken L.S. Gurry R. The system iron oxygen. 1. The wustite field and related equilibria // J. Amer. Chem. Soc. 1945. Vol. 67. P. 1398 – 1412; 1946. Vol. 68. P. 798 – 816.
- Vallet P., Carel C., Raccah P. Valenrs des grandeurs thermodynamiques de la wustite et de la magnetite solides // C. r. Acad. Sci., Paris, 1964. Vol. 258. P. 4028 – 4031.
- Vallet P., Raccah P. Sur les limites du domaine de la wustitesolide et le diagramme general qui en resulte // C. r. Acad. Sci., Paris, 1964. Vol. 258. P. 3679 – 3682.
- Vallet P., Raccah P. Contribution aléetude des proprieties thermodynamiques du protoxide de fersolide // Mem. Sci. Rev. Met. 1965. Vol. 62. No. 1. P. 1 – 29.
- Al Kahtany M.M., Rao Y.K. Reduction of magnetite with hydrogen. Part I: Intrinsic kinetics // Ironmaking Steelmaking. 1980. Vol. 7. No. 1. P. 49 – 58.
- Rao Y.K., Moinpour M. Reduction of hematite with hydrogen at modest temperatures // Met. Trans. 1983. Vol. 14B. No. 4. P. 711 – 723.
- Pineau A., Kanari N., Gaballah I. Kinetics of reduction of iron oxides by H2. Pt. II: Low temperature reduction of magnetite // Thermochim. Acta. 2007. Vol. 456. P. 75 – 88.

Поступила в редакцию 5 мая 2018 г. После доработки 1 апреля 2019 г. Принята к публикации 3 апреля 2019 г.

IZVESTIYA VUZOV. CHERNAYA METALLURGIYA = IZVESTIYA. FERROUS METALLURGY. 2019. VOL. 62. No. 5, pp. 394-406.

THERMODYNAMIC ANALYSIS OF IRON OXIDES REDUCTION USING CARBON AND WATER VAPOUR

Yu.S. Kuznetsov, O.I. Kachurina

South Ural State University, Chelyabinsk, Russia

Abstract. Thermodynamic analysis was performed for complete reduction of iron oxide during heating the initial system $(Fe_3O_4(e_3 mol) - e_3O_4(e_3 mol))$ $-H_2O(b_1 \text{ mol}) - C(\text{excess})$ with isothermal exposure. By the nature of ongoing reactions, processes in the system can be divided into four stages. Carbon gasification by water vapor at temperatures below 880 K activates water gas reaction and CO dissociation to form black carbon. Composition of the resulting H₂ - H₂O - CO - CO₂ gas mixture depends only on the temperature. The consumption of carbon at 880 K is ~0,4446 moles on 1 mole of water. Reduction of Fe_3O_4 to wustite FeO_{1+x} with varying degrees of oxidation occurs in the temperature range 880 – 917 K. Hydrogen reduces oxide at temperatures above 888 K. The percentage part of a whole oxide Fe₃O₄ reduced by hydrogen into this temperature range increases from zero to ~63 %. The total number of Fe_3O_4 , reduced to wustite at 917 K is ~123 moles for 1 mole of water. It is possible only with repeated regeneration of reductants CO and H₂ according to the reactions of carbon gasification by water vapor and by dioxide CO_2 . The carbon expense is about 78 moles. Wustite $FeO_{1.092}$ formed at 917 K can be reduced by monoxide CO only at temperatures of 917 – 955 K to wustite $FeO_{1.054}$ with a lower degree of oxidation. Carbon is gasified only by dioxide CO_2 , the carbon expense is approximately 18 moles. When isothermal exposure is ~955 K, wustite is reduced to iron. Wustite can be reduced only by carbon monoxide. The carbon expense is approximately 257 mol. For full reduction of 123 mol of Fe_3O_4 in a mixture with an excess of carbon in a closed system at 1 atm, 1 mole of water is sufficient. The total carbon consumption is ~353 moles for obtaining 368 moles of Fe, or ~0.21 kg/kg iron.

Keywords: iron oxides, reduction, water gas, carbon, water vapors, carbon gasification, magnetite, wustite.

DOI: 10.17073/0368-0797-2019-5-394-406

REFERENCES

1. Vyatkin G.P. Kuznetsov Yu.S., Mikhailov G.G., Kachurina O.I. Termodinamika vosstanovleniya zheleza iz oksidov [Thermodynamics of iron reduction from oxides]. Chelyabinsk: YuUrGU, 2017, 346 p. (In Russ.).

- Kuznetsov Yu.S., Kachurina O.I. Equilibrium of water gas with carbon. *Vestnik YuUrGU. Ser. Metallurgiya.* 2015, vol. 15, no. 4, pp. 30–41. (In Russ.).
- Mikhailov G. G., Kuznetsov Yu. S., Kachurina O.I. System analysis of the reduction of iron oxides. *Russian Metallurgy (Metally)*. 2014, no. 3, pp. 179–184.
- Strokina I.V., Yakushevich N.F. Changes in redox properties of gaseous phase of C–O₂–H₂ system. *Izvestiya. Ferrous Metallurgy*. 2011, no. 6, pp. 3–5. (In Russ.).
- Grishin A.M., Simonov V.K., Shcheglova I.S. On the disparity of kinetic laws to thermodynamics preconditions of reactions of carbon gasification by H₂O and CO₂. *Izvestiya. Ferrous Metallurgy*. 2013, no. 7, pp. 64–67. (In Russ.).
- Podgorodetskii G.S., Yusfin Yu.S., Sazhin A.Yu., etc. Manufacturing trends of generator gases from different types of solid fuel. *Izvestiya. Ferrous Metallurgy*. 2015, vol. 58, no. 6, pp. 393–401. (In Russ.).
- Kitamura I., Shibata K., Takeda R. In-flight reduction of Fe₂O₃, Cr₂O₃, TiO₂ and Al₂O₃ by Ar – H₂ and Ar – CH₄ plasma. *ISLJ International*. 1993, vol. 33, no. 11, pp. 1150–1158.
- Teplov O.A. Kinetics of the low-temperature hydrogen reduction of magnetite concentrates. *Russian Metallurgy (Metally)*. 2012, no. 1, pp. 8–21.
- 9. Digonskii S.V, Ten V.V. Role of hydrogen in metal oxides reduction by solid carbon. *Al'ternativnaya energetika i ekologiya*. 2009, no. 11(79), pp. 45–55. (In Russ.).
- Digonskii S.V. Carbothermic reduction of oxide raw material in chemical nonequilibrium systems. *Tekhnologiya metallov*. 2008, no. 8, pp. 3–7. (In Russ.).
- Digonskii S.V., Dubinin N. A., Kravtsov E.D. Sposob polucheniya metallov iz ikh sul'fidov [Method of obtaining metals from their sulphides]. Patent RF no. 2111271. Byulleten'izobretenii. 1998, no. 14. (In Russ.).
- Digonskii V.V., Digonskii S.V., Gorbovskii V. E. Sposob polucheniya metallov [Method of obtaining metals]. Patent RF no. 2033431 S1. Byulleten'izobretenii. 1991, no. 11. (In Russ.).
- Muan F., Osborn E.F. Phase eqilibria among oxides in steelmaking. New-York: Pergamon Press, 1965, 418 p.
- Kubaschewski O., Evans E.L., Alcock C.B. Metallurgical Thermochemistry. New-York: Pergamon Press, 1967, 338 p.
- **15.** Kazachkov E.A. *Raschety po teorii metallurgicheskikh protsessov* [Calculations on the theory of metallurgical processes]. Moscow: Metallurgiya, 1988, 288 p. (In Russ.).
- Ryzhonkov D.I., Arsent'ev P.P., Yakovlev V.V. etc. *Teoriya metallurgicheskikh protsessov: uchebnik dlya vuzov* [Theory of metallurgical processes: Textbook for universities]. Moscow: Metallurgiya, 1989, 392 p. (In Russ.).
- Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. *Termodinamika* metallurgicheskikh protsessov i system [Thermodynamics of metallurgical processes and systems]. Moscow: ID MISiS, 2009, 520 p. (In Russ.).

- Mikelsons J. Degree of oxidation of iron in slag as a function of the oxygen partial pressure of the gas phase. *Archiv Eisenhuttenwessen*. 1982, vol. 53, no. 6. S. 251–265.
- Vyatkin G. P., Mikhailov G.G., Kuznetsov Yu.S. etc. Systems analysis of ferric oxides rehabilitation in the water-gas atmosphere. *Iz-vestiya. Ferrous Metallurgy*. 2012, no. 2, pp. 10–13. (In Russ.).
- Mikhailov G.G., Kuznetsov Yu.S., Kachurina O.I., Chernukha A.S. Analysis of phase equilibria in the system "iron oxides – carbon – – CO – CO₂". *Vestnik YuUrGU. Ser. Metallurgiya*. 2013, vol. 13, no. 1, pp. 6–13. (In Russ.).
- Spenser P.J., Kubaschewski O. A thermodynamic assessment of the iron – oxygen system. *Calphad*. 1978, vol. 2, no. 2, pp. 147–167.
- **22.** Wriedth H.A. The Fe O (iron oxygen) system. J. Phas. Equil. 1991, vol. 12, no. 2, pp. 170–200.
- **23.** Sundman B. An assessment of the Fe O system. *J. Phas. Equil.* 1991, vol. 12, no. 3, pp. 127–140.
- Lykasov A.A., Karel K., Men' A.N. etc. *Fiziko-khimicheskie svoist-va vyustita i ego rastvorov* [Physico–chemical properties of wustite and its solutions]. Sverdlovsk: UNC AN SSSR, 1987, 230 p. (In Russ.).
- Darken L.S., Gurry R. The system iron oxygen. 1. The wustite field and related equilibrium. J. Amer. Chem. Soc. 1945, vol. 67, pp. 1398–1412; 1946, vol. 68, pp. 798–816.
- Vallet P., Carel C., Raccah P. Valenrs des grandeurs thermodynamiques de la wustite et de la magnetite solides. *C. r. Acad. Sci.*, Paris. 1964, vol. 258, pp. 4028–4031. (In. Fr.).
- 27. Vallet P., Raccah P. Sur les limites du domaine de la wustitesolide et le diagramme general qui en resulte. *C. r. Acad. Sci.*, Paris. 1964, vol. 258, pp. 3679–3682. (In. Fr.).
- Vallet P., Raccah P. Contribution al'etude des proprieties thermodynamiques du protoxide de fersolide. *Mem. Sci. Rev. Met.* 1965, vol. 62, no.1, pp.1–29. (In. Fr.).
- Al Kahtany M.M., Rao Y.K. Reduction of magnetite with hydrogen. Part I: Intrinsic kinetics. *Ironmaking Steelmaking*. 1980, vol. 7, no. 1, pp. 49–58.
- Rao Y.K., Moinpour M. Reduction of hematite with hydrogen at modest temperatures. *Met. Trans.* 1983, vol. 14B, no. 4, pp. 711–723.
- Pineau A., Kanari N., Gaballah I. Kinetics of reduction of iron oxides by H₂. Part II: Low temperature reduction of magnetite. *Thermochim. Acta*. 2007, vol. 456, pp. 75–88.

Information about the authors:

Yu.S. Kuznetsov, Cand. Sci. (Eng.), Assist. Professor, Professor of the Chair of Physical Chemistry (kuznetcovys@susu.ac.ru) O.I. Kachurina, Cand. Sci. (Chem.), Assist. Professor of the Chair "Inorganic Chemistry" (oivk2013@mail.ru)

> Received May 5, 2018 Revised April 1, 2019 Accepted April 3, 2019